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Objects of Interest: Caps

Definition
An affine (resp. projective) cap is a

subset of the affine (resp. projective) space
in which no three points lie on a line.

We mainly consider affine caps in Fn
p = (Z/pZ)n for primes p, and we set

C(Fn
p) := max{|S| : S is a cap in Fn

p}.

Aim:
construction of large caps in Fn

p for primes p and arbitrary dimension n

↪→ good lower bounds for C(Fn
p)

Since every subset of an affine space can be embedded into the projective
space, our lower bounds also hold in the projective case.
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Upper Bounds

For p ∈ {3, 4, 5}, we have

“no three points on a line” ⇐⇒ “no three points in AP”.

Theorem
Ellenberg–Gijswijt (2016): C(Fn

3) ≤ 2.756n,
Croot–Lev–Pach (2016): C(Zn

4) ≤ 3.611n.

Theorem (Blasiak–Church–Cohn et al. 2017)
We have

C(Fn
p) ≤ (J(p)p)n,

where
J(p) = 1

p min
0<t<1

1− tp

(1− t)t(p−1)/3 .
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Previously Known Lower Bounds
Best known general constructions so far are “local”:

take the tensor product of a large cap in small dimension
For a fixed prime p, we have:

Theorem (Bose 1947)

C(F3
p) = p2 and so C(Fn

p)� p2n/3.

Theorem (Edel–Bierbrauer 2004)

C(F6
p) ≥ p4 + p2 − 1 and so C(Fn

p)� (p4 + p2 − 1)n/6.

Theorem (Elsholtz–Pach 2020)

C(Zn
4)� 3n

√
n and C(Fn

5)� 3n
√
n .
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Our Results

Theorem (Elsholtz–L 2020)

C(Fn
11)� 5n

n1.5 , C(Fn
17)� 7n

n2.5 , C(Fn
23)� 9n

n3.5 ,

C(Fn
29)� 10n

n4 , C(Fn
41)� 12n

n5 .

exponential improvements for all primes p ≤ 41 with p ≡ 5 mod 6
“global” and “digit-based” construction based on

the method of Elsholtz and Pach for progression-free sets
basic idea of the construction:
For vectors in the cap,

select a “good” set of digits D ⊆ Fp
and only use these digits for the vectors.

↪→ caps of size (|D| − o(1))n
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Comparison of the Lower Bounds

In order to get rid of the dimension in C(Fn
p), we define

c(p) := lim
n→∞

(
C(Fn

p)
)1/n and µ(p) := lim

n→∞

logp C(Fn
p)

n .

It is known that both limits exist. Moreover, c(p) ∈ [2, p) and µ(p) < 1.

p p2/3 (p4 + p2 − 1)1/6 new improvement µ(p)
5 2.92401 . . . 2.94243 . . . 3 1.9562% 0.6826 . . .
7 3.65930 . . . 3.67139 . . . 3 0.5645 . . .

11 4.94608 . . . 4.95282 . . . 5 0.9526% 0.6711 . . .
13 5.52877 . . . 5.53418 . . . 4 0.5404 . . .
17 6.61148 . . . 6.61528 . . . 7 5.8156% 0.6868 . . .
19 7.12036 . . . 7.12364 . . . 6 0.6085 . . .
23 8.08757 . . . 8.09012 . . . 9 11.2468% 0.7007 . . .
29 9.43913 . . . 9.44099 . . . ≥ 10 ≥ 5.9210% ≥ 0.6838 . . .
31 9.86827 . . . 9.86998 . . . ≥ 8 ≥ 0.6055 . . .
37 11.10370 . . . 11.10505 . . . ≥ 10 ≥ 0.6376 . . .
41 11.89020 . . . 11.89138 . . . ≥ 12 ≥ 0.9134% ≥ 0.6691 . . .
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Overview of the Construction
For a fixed prime p and

some set of digits D ⊆ Fp as well as
some set of “fixed” digits D′ ⊆ D,

we consider the set

S(D,D′, n) :=
{

(a1, . . . , an) ∈ Dn
∣∣∣∣∣ ∀d ∈ D′ : ai = d for n

|D| values of i
}
.

We call (D,D′) good if S(D,D′, n) is a cap for all appropriate n ∈ N.
By Stirling’s formula, we obtain

∣∣S(D,D′, n)
∣∣ =

(|D′|−1∏
`=0

(
n − `n

|D|
n
|D|

))
(|D| −

∣∣D′∣∣)n−|D
′|n
|D| ∼ c|D|n

nδ/2

with

δ = min{
∣∣D′∣∣, |D| − 1} and c = 1√

1− δ/|D|

( |D|
2π

)δ/2
.
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Connection and Difference to APs
Three-term arithmetic progressions are solutions of the equation

x − 2y + z = 0. (?)

Three points x , y , z ∈ Fn
p are not collinear if and only if

ax + by + cz 6= 0 for all (a, b, c) ∈ F3
p \ {(0, 0, 0)}

with a + b + c = 0.

Without loss of generality, we can assume a = 1 and b 6∈ {−1, 0}.

Three points x , y , z ∈ Fn
p are not collinear if and only if

x + by + (−b − 1)z 6= 0 for all b ∈ Fp \ {−1, 0}. (??)

↪→ still p − 2 equations to consider
Idea: Apply the method of Elsholtz and Pach not only to (?), but also to
the other equations (??) corresponding to “weighted progressions”.

 much more involved
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Finding Good Digit Sets (I)

We fix b ∈ Fp \ {−1, 0} and D′ ⊆ D ⊆ Fp, and set

Pb(D) =
{

(x , y , z) ∈ D3
∣∣∣ x + by + (−b − 1)z = 0

}
\
〈
(1, 1, 1)

〉
.

Assume that there is some n ∈ N with |D| | n such that there are 3 points
x = (x1, . . . , xn)>, y = (y1, . . . , yn)>, z = (z1, . . . , zn)> ∈ S(D,D′, n)

which satisfy x + by + (−b − 1)z = 0.
 introduce variable χv for each v = (v1, v2, v3) ∈ Pb(D) which
describes the number of occurrences of v in the components of x , y , z , i.e.,

χv =
∣∣{i ∈ {1, . . . , n} ∣∣ (xi , yi , zi) = v

}∣∣.
Since every digit d in D′ has to occur the same number of times, we find∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv .
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Finding Good Digit Sets (II)

∑
v∈Pb(D)

v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv (?)

S(D,D′, n) does not contain x ,
y , z with x +by +(−b−1)z = 0
for any appropriate n.

⇐⇒
System (?) has no non-trivial
non-negative integral solution

χ = (χv | v ∈ Pb(D)).

Hence, to show the “goodness” of some (D,D′), one has to ensure that
P = {χ ∈ F`≥0 |A · χ = 0}

is empty, where the matrix A represents (?).
 integer programming

Appropriate software is available. �
Checking the emptiness of P is NP-complete. �

 simpler conditions required
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Digit-Reducibility – A Sufficient Condition

Pb(D) =
{

(x , y , z) ∈ D3
∣∣∣ x + by + (−b − 1)z = 0

}
\
〈
(1, 1, 1)

〉
If there is some r ∈ {1, 2, 3} and a digit d ∈ D′ such that

d ′ does not occur in position r in any triple of Pb(D), then
remove all triples of Pb(D) which contain d ′ in any position.

Proceed recursively with the remaining set.
Else: stop.

remaining set is
empty for all b?

(D, D′) is good

yes

no conclusion

no
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Equivalent Equations
We have already seen:

The “goodness” of (D,D′) can be determined via Pb(D).
The order of elements in (x , y , z) ∈ Pb(D) does not matter.

(x , y , z) ∈ Pb(D) ⇐⇒ (x , z , y) ∈ P−b − 1(D)
↪→ only one of the equations

x + by + (−b − 1)z = 0 and x + (−b − 1)y + bz = 0

has to be considered
(x , y , z) ∈ Pb(D) ⇐⇒ (z , y , x) ∈ P(−b − 1)−1b(D)
↪→ only one of the equations

x + by + (−b − 1)z = 0 and
x + (−b − 1)−1by + (−b − 1)−1z = 0

has to be considered

 significant reduction of the number of equations
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Example: p = 11
We choose

the digit set D = {0, 1, 3, 4, 5} and “fixed” digits D′ = {0, 1, 3}.
If (D,D′) is good, then this implies

C(Fn
11)� 5n

n1.5 .

Equivalent equations:
{x − 2y + z = 0, x − 10y + 9z = 0, x − 6y + 5z = 0},
{x − 3y + 2z = 0, x − 7y + 6z = 0, x − 9y + 8z = 0,
x − 5y + 4z = 0, x − 8y + 7z = 0, x − 4y + 3z = 0}.

1 x − 2y + z = 0:
P−2(D) = {( 1 , 3, 5), (3, 4, 5), (5, 3, 1 ), (5, 4, 3)}

↪→ {( 3 , 4, 5), (5, 4, 3 )} → ∅
2 x − 3y + 2z = 0:

P−3(D) = {( 1 , 0 , 5), ( 1 , 3, 4), ( 1 , 4, 0 ), (3, 0 , 4),
(3, 1 , 0 ), (4, 1 , 5), (4, 5, 0 ), (5, 0 , 3)} → ∅

Constructions of Large Caps Gabriel F. Lipnik 14



Example: p = 23

We choose D = D′ = {0, 1, 3, 4, 8, 9, 10, 12, 17},
and we have four non-equivalent equations.

1 x − 2y + z = 0:

A =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0

−1 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 1 1 1 0 0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0 0 0 −1 0 1 1 0 0 −1 0 0 0 −1
0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 −1 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 1 1 1 1
1 1 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0
0 0 0 0 0 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 −1 0 1 1 1 1 1 −1 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 −1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 1 1 1 0 −1 0 0
0 0 −1 0 0 −1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 1 1 1


...
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Thank you for your attention!
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