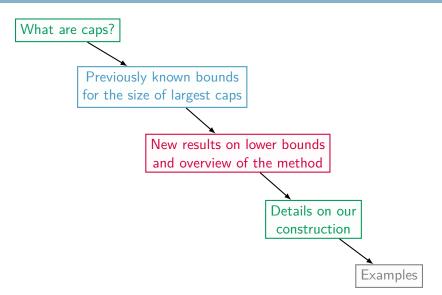
Constructions of Large Caps

Gabriel F. Lipnik Joint Work with Christian Elsholtz

Additive Combinatorics in Marseille 2020 September 9, 2020

Plan for the Following 30 Minutes



Objects of Interest: Caps

Definition

An affine (resp. projective) cap is a subset of the affine (resp. projective) space in which no three points lie on a line.

We mainly consider affine caps in $\mathbb{F}_p^n = (\mathbb{Z}/p\mathbb{Z})^n$ for primes p, and we set

$$C(\mathbb{F}_p^n) := \max\{|S| \colon S \text{ is a cap in } \mathbb{F}_p^n\}.$$

Aim

construction of large caps in \mathbb{F}_p^n for primes p and arbitrary dimension n

 \hookrightarrow **good lower bounds** for $C(\mathbb{F}_p^n)$

Since every subset of an affine space can be embedded into the projective space, our lower bounds also hold in the projective case.

Upper Bounds

For $p \in \{3,4,5\}$, we have

"no three points on a line" \iff "no three points in AP".

Theorem

- Ellenberg-Gijswijt (2016): $C(\mathbb{F}_3^n) \leq 2.756^n$,
- Croot–Lev–Pach (2016): $C(\mathbb{Z}_4^n) \leq 3.611^n$.

Theorem (Blasiak-Church-Cohn et al. 2017)

We have

$$C(\mathbb{F}_p^n) \leq (J(p)p)^n$$
,

where

$$J(p) = \frac{1}{p} \min_{0 < t < 1} \frac{1 - t^p}{(1 - t)t^{(p-1)/3}}.$$

Previously Known Lower Bounds

Best known general constructions so far are "local":

take the tensor product of a large cap in small dimension For a fixed prime p, we have:

Theorem (Bose 1947)

$$C(\mathbb{F}_p^3) = p^2$$
 and so $C(\mathbb{F}_p^n) \gg p^{2n/3}$.

Theorem (Edel-Bierbrauer 2004)

$$C(\mathbb{F}_p^6) \geq p^4 + p^2 - 1$$
 and so $C(\mathbb{F}_p^n) \gg (p^4 + p^2 - 1)^{n/6}$.

Theorem (Elsholtz-Pach 2020)

$$C(\mathbb{Z}_4^n)\gg rac{3^n}{\sqrt{n}} \quad ext{and} \quad C(\mathbb{F}_5^n)\gg rac{3^n}{\sqrt{n}}.$$

Our Results

Theorem (Elsholtz-L 2020)

$$C(\mathbb{F}_{11}^n) \gg \frac{5^n}{n^{1.5}}, \quad C(\mathbb{F}_{17}^n) \gg \frac{7^n}{n^{2.5}}, \quad C(\mathbb{F}_{23}^n) \gg \frac{9^n}{n^{3.5}},$$

$$C(\mathbb{F}_{29}^n) \gg \frac{10^n}{n^4}, \quad C(\mathbb{F}_{41}^n) \gg \frac{12^n}{n^5}.$$

- exponential improvements for all primes $p \le 41$ with $p \equiv 5 \mod 6$
- "global" and "digit-based" construction based on the method of Elsholtz and Pach for progression-free sets
- basic idea of the construction:

For vectors in the cap,

select a "good" set of digits $D \subseteq \mathbb{F}_p$ and only use these digits for the vectors.

 \hookrightarrow caps of size $(|D| - o(1))^n$

Comparison of the Lower Bounds

In order to get rid of the dimension in $C(\mathbb{F}_p^n)$, we define

$$c(p) \coloneqq \lim_{n \to \infty} \left(C(\mathbb{F}_p^n) \right)^{1/n} \quad \text{and} \quad \mu(p) \coloneqq \lim_{n \to \infty} \frac{\log_p C(\mathbb{F}_p^n)}{n}.$$

It is known that both limits exist. Moreover, $c(p) \in [2, p)$ and $\mu(p) < 1$.

р	$p^{2/3}$	$(p^4+p^2-1)^{1/6}$	new	improvement	$\mu(p)$
5	2.92401	2.94243	3	1.9562%	0.6826
7	3.65930	3.67139	3		0.5645
11	4.94608	4.95282	5	0.9526%	0.6711
13	5.52877	5.53418	4		0.5404
17	6.61148	6.61528	7	5.8156%	0.6868
19	7.12036	7.12364	6		0.6085
23	8.08757	8.09012	9	11.2468%	0.7007
29	9.43913	9.44099	≥ 10	≥ 5.9210%	\geq 0.6838
31	9.86827	9.86998	≥ 8		$\geq 0.6055\dots$
37	11.10370	11.10505	≥ 10		$\geq 0.6376\dots$
41	11.89020	11.89138	≥ 12	$\geq 0.9134\%$	\geq 0.6691

Overview of the Construction

For a fixed prime p and

some set of digits
$$D \subseteq \mathbb{F}_p$$
 as well as some set of "fixed" digits $D' \subseteq D$,

we consider the set

$$S(D,D',n) := \left\{ (a_1,\ldots,a_n) \in D^n \,\middle|\, \forall d \in D' \colon a_i = d \text{ for } \frac{n}{|D|} \text{ values of } i \right\}.$$

We call (D, D') good if S(D, D', n) is a cap for all appropriate $n \in \mathbb{N}$. By Stirling's formula, we obtain

$$|S(D, D', n)| = \left(\prod_{\ell=0}^{|D'|-1} {n - \frac{\ell n}{|D|} \choose \frac{n}{|D|}}\right) (|D| - |D'|)^{n - \frac{|D'|n}{|D|}} \sim \frac{c|D|^n}{n^{\delta/2}}$$

with

$$\delta = \min\{ig|D'ig|, |D|-1\} \quad ext{and} \quad c = rac{1}{\sqrt{1-\delta/|D|}} \Big(rac{|D|}{2\pi}\Big)^{\delta/2}.$$

Connection and Difference to APs

Three-term arithmetic progressions are solutions of the equation

$$x - 2y + z = 0. \tag{*}$$

Three points x, y, $z \in \mathbb{F}_p^n$ are **not collinear** if and only if

$$ax + by + cz \neq 0$$
 for all $(a, b, c) \in \mathbb{F}_p^3 \setminus \{(0, 0, 0)\}$

with
$$a + b + c = 0$$
.

Without loss of generality, we can assume a = 1 and $b \notin \{-1, 0\}$.

Three points x, y, $z \in \mathbb{F}_p^n$ are not collinear if and only if

$$x + by + (-b - 1)z \neq 0$$
 for all $b \in \mathbb{F}_p \setminus \{-1, 0\}$. $(\star\star)$

 \hookrightarrow still p-2 equations to consider

Idea: Apply the method of Elsholtz and Pach not only to (\star) , but also to the other equations $(\star\star)$ corresponding to "weighted progressions".

→ much more involved

Finding Good Digit Sets (I)

We fix $b \in \mathbb{F}_p \setminus \{-1,0\}$ and $D' \subseteq D \subseteq \mathbb{F}_p$, and set

$$P_b(D) = \left\{ (x, y, z) \in D^3 \,\middle|\, x + by + (-b - 1)z = 0 \right\} \setminus \left\langle (1, 1, 1) \right\rangle.$$

Assume that there is some $n \in \mathbb{N}$ with $|D| \mid n$ such that there are 3 points

$$x = (x_1, \ldots, x_n)^\top, \ y = (y_1, \ldots, y_n)^\top, \ z = (z_1, \ldots, z_n)^\top \in S(D, D', n)$$

which satisfy x + by + (-b - 1)z = 0.

 \rightsquigarrow introduce variable χ_v for each $v = (v_1, v_2, v_3) \in P_b(D)$ which describes the number of occurrences of v in the components of x, y, z, i.e.,

$$\chi_{v} = |\{i \in \{1, \ldots, n\} | (x_{i}, y_{i}, z_{i}) = v\}|.$$

Since every digit d in D' has to occur the same number of times, we find

$$\sum_{\substack{v \in P_b(D) \\ v_1 = d}} \chi_v = \sum_{\substack{v \in P_b(D) \\ v_2 = d}} \chi_v \quad \text{and} \quad \sum_{\substack{v \in P_b(D) \\ v_1 = d}} \chi_v = \sum_{\substack{v \in P_b(D) \\ v_3 = d}} \chi_v.$$

Finding Good Digit Sets (II)

$$\sum_{\substack{v \in P_b(D) \\ v_1 = d}} \chi_v = \sum_{\substack{v \in P_b(D) \\ v_2 = d}} \chi_v \quad \text{and} \quad \sum_{\substack{v \in P_b(D) \\ v_1 = d}} \chi_v = \sum_{\substack{v \in P_b(D) \\ v_3 = d}} \chi_v \tag{\star}$$

$$S(D, D', n)$$
 does not contain x , y , z with $x + by + (-b - 1)z = 0 \iff for any appropriate n .$

System (*) has no non-trivial non-negative integral solution $\chi = (\chi_v \mid v \in P_b(D)).$

Hence, to show the "goodness" of some (D,D'), one has to ensure that

$$\mathcal{P} = \{ \chi \in \mathbb{F}^{\ell}_{\geq 0} \, | \, A \cdot \chi = 0 \}$$

is empty, where the matrix A represents (\star) .

- → integer programming
- Appropriate software is available.
- ullet Checking the emptiness of ${\mathcal P}$ is NP-complete. $oldsymbol{oldsymbol{eta}}$

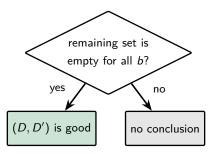
→ simpler conditions required

Digit-Reducibility – A Sufficient Condition

$$P_b(D) = \{(x, y, z) \in D^3 \mid x + by + (-b - 1)z = 0\} \setminus \langle (1, 1, 1) \rangle$$

If there is some $r \in \{1,2,3\}$ and a digit $d \in D'$ such that d' does not occur in position r in any triple of $P_b(D)$, then remove all triples of $P_b(D)$ which contain d' in any position. Proceed recursively with the remaining set.

Else: stop.



Equivalent Equations

We have already seen:

The "goodness" of (D, D') can be determined via $P_b(D)$. The order of elements in $(x, y, z) \in P_b(D)$ does not matter.

•
$$(x, y, z) \in P_b(D) \iff (x, z, y) \in P_{-b-1}(D)$$

 \hookrightarrow only one of the equations

$$x + by + (-b - 1)z = 0$$
 and $x + (-b - 1)y + bz = 0$

has to be considered

•
$$(x, y, z) \in P_b(D) \iff (z, y, x) \in P_{(-b-1)^{-1}b}(D)$$

 \hookrightarrow only one of the equations

$$x + by + (-b - 1)z = 0 \quad \text{and} \quad$$

$$x + (-b-1)^{-1}by + (-b-1)^{-1}z = 0$$

has to be considered

→ significant reduction of the number of equations

Example: p = 11

We choose

• the digit set $D = \{0, 1, 3, 4, 5\}$ and "fixed" digits $D' = \{0, 1, 3\}$. If (D, D') is good, then this implies

$$C(\mathbb{F}_{11}^n)\gg \frac{5^n}{n^{1.5}}.$$

Equivalent equations:

$$\{x - 2y + z = 0, x - 10y + 9z = 0, x - 6y + 5z = 0\},$$

$$\{x - 3y + 2z = 0, x - 7y + 6z = 0, x - 9y + 8z = 0, x - 5y + 4z = 0, x - 8y + 7z = 0, x - 4y + 3z = 0\}.$$

①
$$x - 2y + z = 0$$
:

$$P_{-2}(D) = \{ (1,3,5), (3,4,5), (5,3,1), (5,4,3) \}$$

$$\hookrightarrow \{ (3,4,5), (5,4,3) \} \rightarrow \emptyset$$

②
$$x - 3y + 2z = 0$$
:

$$P_{-3}(D) = \{ (1, 0, 5), (1, 3, 4), (1, 4, 0), (3, 0, 4), (3, 1, 0), (4, 1, 5), (4, 5, 0), (5, 0, 3) \} \rightarrow \emptyset$$

Example: p = 23

We choose $D = D' = \{0, 1, 3, 4, 8, 9, 10, 12, 17\}$, and we have four non-equivalent equations.

Thank you for your attention!