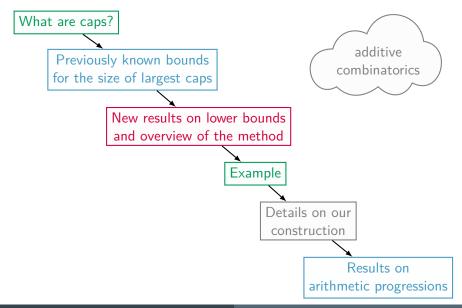
Constructions of Large Caps and Progression-Free Sets

Gabriel F. Lipnik

Joint Work with Christian Elsholtz and Benjamin Klahn

Seminar of the Doctoral School January 15, 2021

Plan for the Following 25 Minutes



Definition

An affine (resp. projective) **cap** is a subset of the affine (resp. projective) space in which **no three points lie on a line**.

We mainly consider affine caps in $\mathbb{F}_p^n = (\mathbb{Z}/p\mathbb{Z})^n$ for primes p, and we set

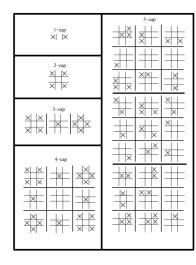
$$C(\mathbb{F}_p^n) \coloneqq \max\{|S| \colon S \text{ is a cap in } \mathbb{F}_p^n\}.$$

Aim:

construction of large caps in \mathbb{F}_p^n for primes p and arbitrary dimension n

 \hookrightarrow good lower bounds for $C(\mathbb{F}_p^n)$

Since every subset of an affine space can be embedded into the projective space, our lower bounds also hold in the projective case.



- Situation gets complicated very fast.
- It is difficult to find maximal caps in high dimensions.

 \rightsquigarrow bounds

Upper Bounds

For $p \in \{3, 4, 5\}$, we have

"no three points on a line" \iff "no three points in AP".

Theorem

- Ellenberg–Gijswijt (2016): $C(\mathbb{F}_3^n) \leq 2.756^n$,
- Croot-Lev-Pach (2016): $C(\mathbb{Z}_4^n) \le 3.611^n$.

Theorem (Blasiak–Church–Cohn et al. 2017)

We have

 $C(\mathbb{F}_p^n) \leq (J(p)p)^n,$

where

$$J(p) = \frac{1}{p} \min_{0 < t < 1} \frac{1 - t^p}{(1 - t)t^{(p-1)/3}}.$$

Previously Known Lower Bounds

TU Graz

Best known general constructions so far are "local": take the tensor product of a large cap in small dimension

For a fixed prime p, we have:

Theorem (Bose 1947)

$$\mathcal{C}(\mathbb{F}_p^3)= p^2$$
 and so $\mathcal{C}(\mathbb{F}_p^n)\gg p^{2n/3}$.

Theorem (Edel–Bierbrauer 2004)

$$C(\mathbb{F}_p^6)\geq p^4+p^2-1$$
 and so $C(\mathbb{F}_p^n)\gg (p^4+p^2-1)^{n/6}$.

Theorem (Elsholtz–Pach 2020)

$$C(\mathbb{Z}_4^n) \gg \frac{3^n}{\sqrt{n}}$$
 and $C(\mathbb{F}_5^n) \gg \frac{3^n}{\sqrt{n}}$.

Constructions of Large Caps and Progression-Free Sets

Theorem (Elsholtz–L 2020+)

$$C(\mathbb{F}_{11}^n) \gg \frac{5^n}{n^{1.5}}, \quad C(\mathbb{F}_{17}^n) \gg \frac{7^n}{n^{2.5}}, \quad C(\mathbb{F}_{23}^n) \gg \frac{9^n}{n^{3.5}},$$
$$C(\mathbb{F}_{29}^n) \gg \frac{10^n}{n^4}, \quad C(\mathbb{F}_{41}^n) \gg \frac{12^n}{n^5}.$$

- exponential improvements for all primes $p \le 41$ with $p \equiv 5 \mod 6$
- "global" and "digit-based" construction based on the method of Elsholtz and Pach for progression-free sets
- basic idea of the construction:

For vectors in the cap,

select a "good" set of digits $D \subseteq \mathbb{F}_p$

and only use these digits for the vectors.

 \hookrightarrow caps of size $(|D| - o(1))^n$

Comparison of the Lower Bounds

TU Graz

In order to get rid of the dimension in $C(\mathbb{F}_p^n)$, we define

$$c(p) \coloneqq \lim_{n \to \infty} (C(\mathbb{F}_p^n))^{1/n}$$

It is known that the limit exists and $c(p) \in [2, p)$.

p	p ^{2/3}	$(p^4 + p^2 - 1)^{1/6}$	new	improvement
5	2.92401	2.94243	3	1.9562%
7	3.65930	3.67139	3	
11	4.94608	4.95282	5	0.9526%
13	5.52877	5.53418	4	
17	6.61148	6.61528	7	5.8156%
19	7.12036	7.12364	6	
23	8.08757	8.09012	9	11.2468%
29	9.43913	9.44099	\geq 10	\geq 5.9210%
31	9.86827	9.86998	≥ 8	
37	11.10370	11.10505	≥ 10	
41	11.89020	11.89138	≥ 12	\geq 0.9134%

Overview of the Construction

TU Graz

For a fixed prime p and some set of digits $D \subseteq \mathbb{F}_p$, we consider the set

$$S(D,n) \coloneqq \left\{ (a_1, \ldots, a_n) \in D^n \, \middle| \, \forall d \in D \colon a_i = d \text{ for } \frac{n}{|D|} \text{ values of } i
ight\}.$$

We call D good if S(D, n) is a cap for all appropriate $n \in \mathbb{N}$. By Stirling's formula, we obtain

$$|S(D,n)| = \prod_{\ell=0}^{|D|-1} \binom{n-\frac{\ell n}{|D|}}{\frac{n}{|D|}} \sim \frac{c|D|^n}{n^{\delta}}$$

with

$$\delta = rac{|D|-1}{2}$$
 and $c = rac{1}{\sqrt{1-\delta/|D|}} \Big(rac{|D|}{2\pi}\Big)^{\delta/2}$

.

Connection and Difference to APs

Three-term arithmetic progressions are solutions of the equation

$$x - 2y + z = 0. \tag{(\star)}$$

Three points x, y, $z \in \mathbb{F}_p^n$ are **not collinear** if and only if $ax + by + cz \neq 0$ for all $(a, b, c) \in \mathbb{F}_p^3 \setminus \{(0, 0, 0)\}$ with a + b + c = 0.

Without loss of generality, we can assume a = 1 and $b \notin \{-1, 0\}$.

Three points x, y, $z \in \mathbb{F}_p^n$ are **not collinear** if and only if

$$x + by + (-b - 1)z \neq 0$$
 for all $b \in \mathbb{F}_p \setminus \{-1, 0\}$. $(\star\star)$

 \hookrightarrow still p-2 equations to consider

Idea: Apply the method of Elsholtz and Pach not only to (\star) , but also to the other equations $(\star\star)$ corresponding to "weighted progressions".

~ much more involved

Example: p = 11

We choose

- the digit set $D = \{0, 1, 3, 4, 5\}.$
- If D is good, then this implies

$$C(\mathbb{F}_{11}^n)\gg \frac{5^n}{n^2}.$$

Equivalent equations:

•
$$\{x - 2y + z = 0, x - 10y + 9z = 0, x - 6y + 5z = 0\},$$

• $\{x - 3y + 2z = 0, x - 7y + 6z = 0, x - 9y + 8z = 0, x - 5y + 4z = 0, x - 8y + 7z = 0, x - 4y + 3z = 0\}.$
• $x - 2y + z = 0:$
 $P_{-2}(D) = \{(1, 3, 5), (3, 4, 5), (5, 3, 1), (5, 4, 3)\}$
 $\hookrightarrow \{(3, 4, 5), (5, 4, 3)\} \rightarrow \emptyset$
• $x - 3y + 2z = 0:$
 $P_{-3}(D) = \{(1, 0, 5), (1, 3, 4), (1, 4, 0), (3, 0, 4), (3, 1, 0), (4, 1, 5), (4, 5, 0), (5, 0, 3)\} \rightarrow \emptyset$

Finding Good Digit Sets (I)

We fix $b \in \mathbb{F}_p \setminus \{-1, 0\}$ and $D \subseteq \mathbb{F}_p$, and set

$$P_b(D) = \left\{ (x,y,z) \in D^3 \, \Big| \, x + by + (-b-1)z = 0 \right\} \setminus \left\langle (1,1,1) \right\rangle.$$

Assume that there is some $n \in \mathbb{N}$ with $|D| \mid n$ such that there are 3 points

$$x = (x_1, \ldots, x_n)^{\top}, \ y = (y_1, \ldots, y_n)^{\top}, \ z = (z_1, \ldots, z_n)^{\top} \in S(D, n)$$

which satisfy x + by + (-b - 1)z = 0.

→ **introduce variable** χ_v for each $v = (v_1, v_2, v_3) \in P_b(D)$ which describes the number of occurrences of v in the components of x, y, z, i.e.,

$$\chi_{v} = |\{i \in \{1, \ldots, n\} | (x_{i}, y_{i}, z_{i}) = v\}|.$$

Since every digit d in D has to occur the same number of times, we find

$$\sum_{\substack{\nu \in P_b(D) \\ \nu_1 = d}} \chi_{\nu} = \sum_{\substack{\nu \in P_b(D) \\ \nu_2 = d}} \chi_{\nu} \text{ and } \sum_{\substack{\nu \in P_b(D) \\ \nu_1 = d}} \chi_{\nu} = \sum_{\substack{\nu \in P_b(D) \\ \nu_3 = d}} \chi_{\nu}.$$

Constructions of Large Caps and Progression-Free Sets

Finding Good Digit Sets (II)

$$\sum_{\substack{\nu \in P_b(D)\\\nu_1 = d}} \chi_{\nu} = \sum_{\substack{\nu \in P_b(D)\\\nu_2 = d}} \chi_{\nu} \quad \text{and} \quad \sum_{\substack{\nu \in P_b(D)\\\nu_1 = d}} \chi_{\nu} = \sum_{\substack{\nu \in P_b(D)\\\nu_3 = d}} \chi_{\nu} \quad (\star)$$

S(D, n) does not contain x, y, z with x + by + (-b-1)z = 0 for \iff System (*) has no non-trivial non-negative integral solution $\chi = (\chi_v \mid v \in P_b(D)).$

Hence, to show the "goodness" of some D, one has to ensure that

 $\mathcal{P} = \{ \chi \in \mathbb{Z}^{\ell}_{\geq \mathbf{0}} \, | \, \mathbf{A} \cdot \chi = \mathbf{0} \}$

is empty, where the matrix A represents (\star) .

→ integer programming

- Appropriate software is available. 😊
- Checking the emptiness of $\mathcal P$ is NP-complete. $\ensuremath{\mathfrak{O}}$

\rightsquigarrow simpler conditions required

Arithmetic Progressions

Let $r_k(\mathbb{F}_p^n)$ denote the size of the largest progression-free set in \mathbb{F}_p^n .

Theorem (Lin–Wolf 2010)

If $k \leq p$, then we have

$$r_k(\mathbb{F}_p^n) \ge (p^{2(k-1)} + p^{k-1} - 1)^{\frac{n}{2k}} \approx p^{\frac{(k-1)n}{k}}.$$

Theorem (Elsholtz–Pach 2020)

For $p \ge 5$ and some explicitly given constant d_p , we have

$$r_3(\mathbb{F}_p^n) \geq \frac{d_p}{\sqrt{n}} \Big(\frac{p+1}{2}\Big)^n.$$

Theorem (Elsholtz–Klahn–L 2020+)

 $r_5(\mathbb{F}_{23}^n) \gg (17 - o(1))^n$ $r_7(\mathbb{F}_{29}^n) \gg (24 - o(1))^n$ (improving on 12.28ⁿ) (improving on 17.92ⁿ)

Constructions of Large Caps and Progression-Free Sets

Thank you for your attention!