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Objects of Interest: Caps

Definition
An affine (resp. projective) cap is a

subset of the affine (resp. projective) space
in which no three points lie on a line.

We mainly consider affine caps in Fn
p = (Z/pZ)n for primes p, and we set

C(Fn
p) := max{|S| : S is a cap in Fn

p}.

Aim:
construction of large caps in Fn

p for primes p and arbitrary dimension n

↪→ good lower bounds for C(Fn
p)

Since every subset of an affine space can be embedded into the projective
space, our lower bounds also hold in the projective case.

Constructions of Large Caps and Progression-Free Sets Gabriel F. Lipnik 3



Some Maximal Caps in Fn
3 for 1 ≤ n ≤ 5

Situation gets complicated very fast.
It is difficult to find maximal caps in
high dimensions.

 bounds
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Upper Bounds

For p ∈ {3, 4, 5}, we have

“no three points on a line” ⇐⇒ “no three points in AP”.

Theorem
Ellenberg–Gijswijt (2016): C(Fn

3) ≤ 2.756n,
Croot–Lev–Pach (2016): C(Zn

4) ≤ 3.611n.

Theorem (Blasiak–Church–Cohn et al. 2017)
We have

C(Fn
p) ≤ (J(p)p)n,

where
J(p) = 1

p min
0<t<1

1− tp

(1− t)t(p−1)/3 .
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Previously Known Lower Bounds
Best known general constructions so far are “local”:

take the tensor product of a large cap in small dimension
For a fixed prime p, we have:

Theorem (Bose 1947)

C(F3
p) = p2 and so C(Fn

p)� p2n/3.

Theorem (Edel–Bierbrauer 2004)

C(F6
p) ≥ p4 + p2 − 1 and so C(Fn

p)� (p4 + p2 − 1)n/6.

Theorem (Elsholtz–Pach 2020)

C(Zn
4)� 3n

√
n and C(Fn

5)� 3n
√
n .
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Our Results

Theorem (Elsholtz–L 2020+)

C(Fn
11)� 5n

n1.5 , C(Fn
17)� 7n

n2.5 , C(Fn
23)� 9n

n3.5 ,

C(Fn
29)� 10n

n4 , C(Fn
41)� 12n

n5 .

exponential improvements for all primes p ≤ 41 with p ≡ 5 mod 6
“global” and “digit-based” construction based on

the method of Elsholtz and Pach for progression-free sets
basic idea of the construction:
For vectors in the cap,

select a “good” set of digits D ⊆ Fp
and only use these digits for the vectors.

↪→ caps of size (|D| − o(1))n

Constructions of Large Caps and Progression-Free Sets Gabriel F. Lipnik 7



Comparison of the Lower Bounds

In order to get rid of the dimension in C(Fn
p), we define

c(p) := lim
n→∞

(
C(Fn

p)
)1/n

.

It is known that the limit exists and c(p) ∈ [2, p).

p p2/3 (p4 + p2 − 1)1/6 new improvement
5 2.92401 . . . 2.94243 . . . 3 1.9562%
7 3.65930 . . . 3.67139 . . . 3

11 4.94608 . . . 4.95282 . . . 5 0.9526%
13 5.52877 . . . 5.53418 . . . 4
17 6.61148 . . . 6.61528 . . . 7 5.8156%
19 7.12036 . . . 7.12364 . . . 6
23 8.08757 . . . 8.09012 . . . 9 11.2468%
29 9.43913 . . . 9.44099 . . . ≥ 10 ≥ 5.9210%
31 9.86827 . . . 9.86998 . . . ≥ 8
37 11.10370 . . . 11.10505 . . . ≥ 10
41 11.89020 . . . 11.89138 . . . ≥ 12 ≥ 0.9134%
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Overview of the Construction
For a fixed prime p and

some set of digits D ⊆ Fp,
we consider the set

S(D, n) :=
{

(a1, . . . , an) ∈ Dn
∣∣∣∣∣ ∀d ∈ D : ai = d for n

|D| values of i
}
.

We call D good if S(D, n) is a cap for all appropriate n ∈ N.
By Stirling’s formula, we obtain

|S(D, n)| =
|D|−1∏
`=0

(
n − `n

|D|
n
|D|

)
∼ c|D|n

nδ

with
δ = |D| − 1

2 and c = 1√
1− δ/|D|

( |D|
2π

)δ/2
.
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Connection and Difference to APs
Three-term arithmetic progressions are solutions of the equation

x − 2y + z = 0. (?)

Three points x , y , z ∈ Fn
p are not collinear if and only if

ax + by + cz 6= 0 for all (a, b, c) ∈ F3
p \ {(0, 0, 0)}

with a + b + c = 0.

Without loss of generality, we can assume a = 1 and b 6∈ {−1, 0}.

Three points x , y , z ∈ Fn
p are not collinear if and only if

x + by + (−b − 1)z 6= 0 for all b ∈ Fp \ {−1, 0}. (??)

↪→ still p − 2 equations to consider
Idea: Apply the method of Elsholtz and Pach not only to (?), but also to
the other equations (??) corresponding to “weighted progressions”.

 much more involved
Constructions of Large Caps and Progression-Free Sets Gabriel F. Lipnik 10



Example: p = 11
We choose

the digit set D = {0, 1, 3, 4, 5}.
If D is good, then this implies

C(Fn
11)� 5n

n2 .

Equivalent equations:
{x − 2y + z = 0, x − 10y + 9z = 0, x − 6y + 5z = 0},
{x − 3y + 2z = 0, x − 7y + 6z = 0, x − 9y + 8z = 0,
x − 5y + 4z = 0, x − 8y + 7z = 0, x − 4y + 3z = 0}.

1 x − 2y + z = 0:
P−2(D) = {( 1 , 3, 5), (3, 4, 5), (5, 3, 1 ), (5, 4, 3)}

↪→ {( 3 , 4, 5), (5, 4, 3 )} → ∅
2 x − 3y + 2z = 0:

P−3(D) = {( 1 , 0 , 5), ( 1 , 3, 4), ( 1 , 4, 0 ), (3, 0 , 4),
(3, 1 , 0 ), (4, 1 , 5), (4, 5, 0 ), (5, 0 , 3)} → ∅
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Finding Good Digit Sets (I)

We fix b ∈ Fp \ {−1, 0} and D ⊆ Fp, and set

Pb(D) =
{

(x , y , z) ∈ D3
∣∣∣ x + by + (−b − 1)z = 0

}
\
〈
(1, 1, 1)

〉
.

Assume that there is some n ∈ N with |D| | n such that there are 3 points
x = (x1, . . . , xn)>, y = (y1, . . . , yn)>, z = (z1, . . . , zn)> ∈ S(D, n)

which satisfy x + by + (−b − 1)z = 0.
 introduce variable χv for each v = (v1, v2, v3) ∈ Pb(D) which
describes the number of occurrences of v in the components of x , y , z , i.e.,

χv =
∣∣{i ∈ {1, . . . , n} ∣∣ (xi , yi , zi) = v

}∣∣.
Since every digit d in D has to occur the same number of times, we find∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv .
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Finding Good Digit Sets (II)

∑
v∈Pb(D)

v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv (?)

S(D, n) does not contain x , y , z
with x + by + (−b− 1)z = 0 for
any appropriate n.

⇐⇒
System (?) has no non-trivial
non-negative integral solution

χ = (χv | v ∈ Pb(D)).

Hence, to show the “goodness” of some D, one has to ensure that
P = {χ ∈ Z`≥0 |A · χ = 0}

is empty, where the matrix A represents (?).
 integer programming

Appropriate software is available. �
Checking the emptiness of P is NP-complete. �

 simpler conditions required
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Arithmetic Progressions
Let rk(Fn

p) denote the size of the largest progression-free set in Fn
p.

Theorem (Lin–Wolf 2010)
If k ≤ p, then we have

rk(Fn
p) ≥

(
p2(k−1) + pk−1 − 1

) n
2k ≈ p

(k−1)n
k .

Theorem (Elsholtz–Pach 2020)
For p ≥ 5 and some explicitly given constant dp, we have

r3(Fn
p) ≥ dp√

n
(p + 1

2
)n
.

Theorem (Elsholtz–Klahn–L 2020+)

r5(Fn
23)� (17− o(1))n (improving on 12.28n)

r7(Fn
29)� (24− o(1))n (improving on 17.92n)
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Thank you for your attention!
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