A CENTRAL LIMIT THEOREM FOR INTEGER PARTITIONS INTO SMALL POWERS

GABRIEL F. LIPNIK

The study of the well-known partition function $p(n)$ counting the number of solutions to $n=a_{1}+\cdots+a_{\ell}$ with integers $1 \leq a_{1} \leq \cdots \leq a_{\ell}$ has a long history in combinatorics. In this talk, we discuss a variant, namely partitions of integers into $n=\left\lfloor a_{1}^{\alpha}\right\rfloor+\cdots+\left\lfloor a_{\ell}^{\alpha}\right\rfloor$ with $1 \leq a_{1}<\cdots<a_{\ell}$ and some fixed $0<\alpha<1$. In particular, we prove a central limit theorem for the number of summands in such partitions.

This is joint work with Manfred G. Madritsch and Robert F. Tichy.
Graz University of Technology, Austria
Email address: math@gabriellipnik.at

