A Central Limit Theorem for Integer Partitions into Small Powers

Gabriel F. Lipnik

Joint Work with Manfred G. Madritsch and Robert F. Tichy

Doctoral School Seminar
November 18, 2022

Plan for the Following 25 Minutes

- Integer partitions

$$
42=1+2+6+10+23
$$

- restricted and unrestricted partitions
- classical results
- Variants

$$
42=2^{2}+2^{2}+3^{2}+5^{2}
$$

- partitions into powers
- primes as summands
- Partitions into small powers

$$
42=\lfloor\sqrt{7}\rfloor+\lfloor\sqrt{379}\rfloor+\lfloor\sqrt{449}\rfloor
$$

- our result \rightsquigarrow central limit theorem
- idea of the proof
\rightsquigarrow enumerative and analytic combinatorics

Integer Partitions

A partition of $n \in \mathbb{N}$ is a decomposition of n as a sum of positive integers, disregarding the order of the summands.

$$
\begin{array}{rll}
42=42 & (1) & 4 \\
=23+11+4+4 & (2) & =4+1 \\
= & (3) & =2+2 \\
=30+10+2 & & =2+1+1 \\
& \vdots & \\
& & =1+1+1+1 \\
& p(n)=\# \text { different partitions of } n & \\
& \Rightarrow p(4)=5
\end{array}
$$

Integer Partitions - Ferrer Diagrams

[^0]
Restricted Partitions

A partition is called restricted
if all summands are distinct.

$$
\begin{align*}
42 & =42 \tag{1}\\
& =23+11+4+4 \tag{1}\\
& =30+10+2 \tag{2}\\
& =22+20=20+22 \tag{3}
\end{align*}
$$

$$
\begin{align*}
4 & =4 \\
& =3+1 \tag{2}\\
& =2+2 \\
& =2+1+1 \\
& =1+1+1+1
\end{align*}
$$

$q(n)=\#$ different restricted partitions of $n \quad \Rightarrow q(4)=2$

Classical Results for the Partition Function

$$
\begin{aligned}
& P(z)=1+\sum_{n \geq 1} p(n) z^{n}=\prod_{k \geq 1} \frac{1}{1-z^{k}} \\
& Q(z)=1+\sum_{n \geq 1} q(n) z^{n}=\prod_{k \geq 1}\left(1+z^{k}\right)
\end{aligned}
$$

Hardy-Ramanujan (1918), Uspensky (1920), Erdős (1942):

$$
p(n) \sim \frac{1}{4 \sqrt{3} n} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

Rademacher (1937) provided an asymptotic expansion for $p(n)$.
Corollary of a theorem by Meinardus (1954):

$$
q(n) \sim \frac{1}{4 \cdot 3^{1 / 4} n^{3 / 4}} \exp \left(\pi \sqrt{\frac{n}{3}}\right)
$$

Variants

Summands have to be

- primes

$$
\begin{aligned}
& n=p_{1}+\cdots+p_{\ell} \\
& n=a_{1}^{k}+\cdots+a_{\ell}^{k} \\
& n=p_{1}^{k}+\cdots+p_{\ell}^{k}
\end{aligned}
$$

- powers with fixed exponent $k \in \mathbb{N}$
- prime powers with fixed exponent $k \in \mathbb{N}$
- integers in sets with certain conditions
- integers with digital restrictions
- small powers with fixed exponent $\alpha \in \mathbb{Q}$ or $\alpha \in \mathbb{R}$ and $0<\alpha<1$

$$
n=\left\lfloor a_{1}^{\alpha}\right\rfloor+\cdots+\left\lfloor a_{\ell}^{\alpha}\right\rfloor
$$

\hookrightarrow unrestricted and restricted ($\mathbf{a}_{\mathbf{i}}$ disctinct, not the summands!)
\hookrightarrow circle method and saddle point method

Partitions into Small Powers

For $\alpha \in \mathbb{R}$ with $0<\alpha<1$, we consider restricted partitions

$$
n=\left\lfloor a_{1}^{\alpha}\right\rfloor+\cdots+\left\lfloor a_{\ell}^{\alpha}\right\rfloor
$$

with $1 \leq a_{1}<\cdots<a_{\ell}$. Let ω_{n} be the random variable counting the number of summands in a random partition of the above form.

Central Limit Theorem (L-Madritsch-Tichy 2022)

The random variable ω_{n} is asymptotically normally dristributed, i.e.,

$$
\mathbb{P}\left(\frac{\omega_{n}-\mu_{n}}{\sigma_{n}}<x\right)=\frac{1}{2 \pi} \int_{-\infty}^{x} e^{-t^{2} / 2} \mathrm{~d} t+o(1)
$$

with mean μ_{n} and variance σ_{n}^{2} satisfying

$$
\mu_{n} \sim c_{1} n^{1 /(\alpha+1)} \quad \text { and } \quad \sigma_{n} \sim c_{2} n^{1 /(\alpha+1)}
$$

where c_{1} and c_{2} are explicitly known.

Overview of the Proof

Analytic parts:

- Mellin transform
- saddle-point method

Probabilistic part:

- Curtiss' theorem for moment-generating functions

By Curtiss' theorem, it is enough to show that

$$
M_{n}(t)=\mathbb{E}\left(e^{\left(\omega_{n}-\mu_{n}\right) t / \sigma_{n}}\right)=e^{-\mu_{n} / \sigma_{n}} \mathbb{E}\left(e^{\omega_{n} t / \sigma_{n}}\right) \xrightarrow{n \rightarrow \infty} e^{t^{2} / 2}
$$

Generating function, where u counts the length of the partition:

$$
Q(z, u)=1+\sum_{n \geq 1} \sum_{k \geq 1} q(n, k) u^{k} z^{n}=\prod_{k \geq 1}\left(1+u z^{k}\right)^{g(k)}
$$

where $g(k)$ is given by

$$
g(k)=\left\lceil(k+1)^{1 / \alpha}\right\rceil-\left\lceil k^{1 / \alpha}\right\rceil .
$$

Generating function, where u counts the length of the partition:

$$
Q(z, u)=1+\sum_{n \geq 1} \sum_{k \geq 1} q(n, k) u^{k} z^{n}=\prod_{k \geq 1}\left(1+u z^{k}\right)^{g(k)}
$$

where $g(k)$ is given by

$$
g(k)=\left\lceil(k+1)^{1 / \alpha}\right\rceil-\left\lceil k^{1 / \alpha}\right\rceil .
$$

Lemma

For the expected value $\mathbb{E}\left(\omega_{n}\right)=\mu_{n}$ and the variance $\mathbb{V}\left(\omega_{n}\right)=\sigma_{n}^{2}$ we have

$$
\mu_{n}=\frac{\left[z^{n}\right] Q_{u}(z, 1)}{\left[z^{n}\right] Q(z, 1)} \quad \text { and } \quad \sigma_{n}^{2}=\frac{\left[z^{n}\right] Q_{u u}(z, 1)}{\left[z^{n}\right] Q(z, 1)}+\frac{\left[z^{n}\right] Q_{u}(z, 1)}{\left[z^{n}\right] Q(z, 1)}-\mu_{n}^{2} .
$$

Proof II

Determine the coefficients of $Q(z, u)$:

$$
\begin{aligned}
{\left[z^{n}\right] Q(z, u) } & =\frac{1}{2 \pi i} \oint_{|z|=e^{-r}} z^{-n-1} Q(z, u) \mathrm{d} z \\
& =\frac{e^{n r}}{2 \pi} \int_{-\pi}^{\pi} \exp (\underbrace{i n t+f(r+i t, u)}_{=g(r+i t)}) \mathrm{d} t
\end{aligned}
$$

with suitable $r>0$ and

$$
f(\tau, u)=\log Q\left(e^{-\tau}, u\right)=\sum_{k \geq 1} g(k) \log \left(1+u e^{-k \tau}\right)
$$

Split the integral at $t_{n}=r^{1+3 /(7 \alpha)}$ and use Taylor expansion of $g(r+i t)$:

$$
\int_{|t|<t_{n}} e^{-\frac{t^{2}}{2} g^{\prime \prime}(r)}\left(1+O\left(\sup _{t}\left|t^{3} g^{\prime \prime \prime}(r+i t)\right|\right)\right) d t
$$

\hookrightarrow analyse $g^{\prime \prime}$ and $g^{\prime \prime \prime}$ (Mellin transform) and estimate the error

- Integer partitions

$$
42=1+2+6+10+23
$$

- restricted and unrestricted partitions
- classical results
- Variants

$$
42=2^{2}+2^{2}+3^{2}+5^{2}
$$

- partitions into powers
- primes as summands
- Partitions into small powers

$$
42=\lfloor\sqrt{7}\rfloor+\lfloor\sqrt{379}\rfloor+\lfloor\sqrt{449}\rfloor
$$

- our result \rightsquigarrow central limit theorem
- idea of the proof

Thank you for your attention!

This work is licensed under CC BY-SA 4.0.

[^0]: "Ferrer partitioning diagrams showing the parititions of positive integers 1 through 8" created by R. A. Nonenmacher and shared via Wikimedia Commons under CC BY-SA 4.0

