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Plan for the Following 25 Minutes

Integer partitions 42 = 1 + 2 + 6 + 10 + 23
restricted and unrestricted partitions
classical results

Variants 42 = 22 + 22 + 32 + 52
partitions into powers
primes as summands

Partitions into small powers 42 = b
√
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√
379c+ b

√
449c

our result  central limit theorem
idea of the proof

 enumerative and analytic combinatorics
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Integer Partitions

A partition of n ∈ N is a
decomposition of n as a sum of positive integers,

disregarding the order of the summands.

42 = 42 (1)
= 23 + 11 + 4 + 4 (2)
= 30 + 10 + 2 (3)
= 22 + 20 = 20 + 22 (4)

...

4 = 4 (1)
= 3 + 1 (2)
= 2 + 2 (3)
= 2 + 1 + 1 (4)
= 1 + 1 + 1 + 1 (5)

p(n) = # different partitions of n ⇒ p(4) = 5
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Integer Partitions – Ferrer Diagrams

“Ferrer partitioning diagrams showing the parititions of positive integers 1 through 8”
created by R. A. Nonenmacher and shared via Wikimedia Commons under CC BY-SA 4.0
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Restricted Partitions

A partition is called restricted
if all summands are distinct.

42 = 42 (1)
=(((((

(((23 + 11 + 4 + 4
= 30 + 10 + 2 (2)
= 22 + 20 = 20 + 22 (3)

...

4 = 4 (1)
= 3 + 1 (2)
=���2 + 2
=(((((2 + 1 + 1
=(((((

((1 + 1 + 1 + 1

q(n) = # different restricted partitions of n ⇒ q(4) = 2
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Classical Results for the Partition Function

P(z) = 1 +
∑
n≥1

p(n)zn =
∏
k≥1

1
1− zk

Q(z) = 1 +
∑
n≥1

q(n)zn =
∏
k≥1

(1 + zk)

Hardy–Ramanujan (1918), Uspensky (1920), Erdős (1942):

p(n) ∼ 1
4
√
3n

exp
(
π

√
2n
3

)
Rademacher (1937) provided an asymptotic expansion for p(n).

Corollary of a theorem by Meinardus (1954):

q(n) ∼ 1
4 · 31/4n3/4

exp
(
π

√n
3

)
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Variants

Summands have to be
primes n = p1 + · · ·+ p`
powers with fixed exponent k ∈ N n = ak

1 + · · ·+ ak
`

prime powers with fixed exponent k ∈ N n = pk
1 + · · ·+ pk

`

integers in sets with certain conditions
integers with digital restrictions
small powers with fixed exponent α ∈ Q or α ∈ R and 0 < α < 1

n = baα1 c+ · · ·+ baα` c

↪→ unrestricted and restricted (ai disctinct, not the summands!)
↪→ circle method and saddle point method
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Partitions into Small Powers

For α ∈ R with 0 < α < 1, we consider restricted partitions

n = baα1 c+ · · ·+ baα` c

with 1 ≤ a1 < · · · < a`. Let ωn be the random variable counting the
number of summands in a random partition of the above form.

Central Limit Theorem (L–Madritsch–Tichy 2022)
The random variable ωn is asymptotically normally dristributed, i.e.,

P
(
ωn − µn
σn

< x
)

= 1
2π

∫ x

−∞
e−t2/2 dt + o(1)

with mean µn and variance σ2n satisfying

µn ∼ c1n1/(α+1) and σn ∼ c2n1/(α+1),

where c1 and c2 are explicitly known.
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Overview of the Proof

Analytic parts:
Mellin transform
saddle-point method

Probabilistic part:
Curtiss’ theorem for
moment-generating functions

By Curtiss’ theorem, it is enough to show that

Mn(t) = E (e(ωn−µn)t/σn) = e−µn/σnE (eωnt/σn) n→∞−−−→ et2/2.

Generating function, where u counts the length of the partition:

Q(z , u) = 1 +
∑
n≥1

∑
k≥1

q(n, k)ukzn =
∏
k≥1

(1 + uzk)g(k)

where g(k) is given by

g(k) =
⌈
(k + 1)1/α

⌉
−
⌈
k1/α⌉.

Integer Partitions into Small Powers Gabriel F. Lipnik 9



Proof I

Generating function, where u counts the length of the partition:

Q(z , u) = 1 +
∑
n≥1

∑
k≥1

q(n, k)ukzn =
∏
k≥1

(1 + uzk)g(k)

where g(k) is given by

g(k) =
⌈
(k + 1)1/α

⌉
−
⌈
k1/α⌉.

Lemma
For the expected value E (ωn) = µn and the variance V(ωn) = σ2n we have

µn = [zn]Qu(z , 1)
[zn]Q(z , 1) and σ2n = [zn]Quu(z , 1)

[zn]Q(z , 1) + [zn]Qu(z , 1)
[zn]Q(z , 1) − µ

2
n.
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Proof II

Determine the coefficients of Q(z , u):

[zn]Q(z , u) = 1
2πi

∮
|z|=e−r

z−n−1Q(z , u) dz

= enr

2π

∫ π

−π
exp
(
int + f (r + it, u)︸ ︷︷ ︸

=:g(r+it)

)
dt

with suitable r > 0 and

f (τ, u) = log Q(e−τ , u) =
∑
k≥1

g(k) log
(
1 + ue−kτ )

Split the integral at tn = r1+3/(7α) and use Taylor expansion of g(r + it):∫
|t|<tn

e−
t2
2 g ′′(r)

(
1 + O

(
sup

t

∣∣∣t3g ′′′(r + it)
∣∣∣)) dt

↪→ analyse g ′′ and g ′′′ (Mellin transform) and estimate the error
Integer Partitions into Small Powers Gabriel F. Lipnik 11



Recap

Integer partitions 42 = 1 + 2 + 6 + 10 + 23
restricted and unrestricted partitions
classical results

Variants 42 = 22 + 22 + 32 + 52
partitions into powers
primes as summands

Partitions into small powers 42 = b
√
7c+ b

√
379c+ b

√
449c

our result  central limit theorem
idea of the proof
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Thank you for your attention!

This work is licensed under CC BY-SA 4.0.

Integer Partitions into Small Powers Gabriel F. Lipnik 13

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

