A Central Limit Theorem for Integer Partitions into Small Powers

Gabriel F. Lipnik

Joint Work with Manfred G. Madritsch and Robert F. Tichy

Doctoral School Seminar November 18, 2022

Plan for the Following 25 Minutes

Integer partitions

- restricted and unrestricted partitions
- classical results

Variants

- partitions into powers
- primes as summands

Partitions into small powers

- $\bullet~$ our result \leadsto central limit theorem
- idea of the proof

\rightsquigarrow enumerative and analytic combinatorics

$42 = 2^2 + 2^2 + 3^2 + 5^2$

42 = 1 + 2 + 6 + 10 + 23

$$42 = \lfloor \sqrt{7} \rfloor + \lfloor \sqrt{379} \rfloor + \lfloor \sqrt{449} \rfloor$$

Integer Partitions

A partition of $n \in \mathbb{N}$ is a decomposition of n as a sum of positive integers, disregarding the order of the summands.

42 = 42(1)4 = 4(1)= 23 + 11 + 4 + 4(2)= 3 + 1(2)(3)= 30 + 10 + 2= 2 + 2(3)= 22 + 20 = 20 + 22(4)= 2 + 1 + 1(4)(5)= 1 + 1 + 1 + 1

p(n) = # different partitions of $n \Rightarrow p(4) = 5$

Integer Partitions – Ferrer Diagrams

"Ferrer partitioning diagrams showing the partitions of positive integers 1 through 8" created by R. A. Nonenmacher and shared via Wikimedia Commons under CC BY-SA 4.0

A partition is called **restricted** if all summands are **distinct**.

q(n) = # different **restricted** partitions of $n \Rightarrow q(4) = 2$

$$P(z) = 1 + \sum_{n \ge 1} p(n) z^n = \prod_{k \ge 1} \frac{1}{1 - z^k}$$
$$Q(z) = 1 + \sum_{n \ge 1} q(n) z^n = \prod_{k \ge 1} (1 + z^k)$$

Hardy-Ramanujan (1918), Uspensky (1920), Erdős (1942):

$$p(n) \sim \frac{1}{4\sqrt{3}n} \exp\left(\pi \sqrt{\frac{2n}{3}}\right)$$

Rademacher (1937) provided an asymptotic expansion for p(n).

Corollary of a theorem by Meinardus (1954):

$$q(n) \sim \frac{1}{4 \cdot 3^{1/4} n^{3/4}} \exp\left(\pi \sqrt{\frac{n}{3}}\right)$$

Summands have to be

- o primes
- powers with fixed exponent $k \in \mathbb{N}$
- prime powers with fixed exponent $k \in \mathbb{N}$
- integers in sets with certain conditions
- integers with digital restrictions
- small powers with fixed exponent $\alpha \in \mathbb{Q}$ or $\alpha \in \mathbb{R}$ and $0 < \alpha < 1$

$$n = \lfloor a_1^{\alpha} \rfloor + \dots + \lfloor a_{\ell}^{\alpha} \rfloor$$

 $\stackrel{\hookrightarrow}{\to} \mathsf{unrestricted} \text{ and restricted } (a_i \ disctinct, \ \mathsf{not} \ \mathsf{the summands!}) \\ \stackrel{\hookrightarrow}{\to} \mathsf{circle} \ \mathsf{method} \ \mathsf{and} \ \mathsf{saddle} \ \mathsf{point} \ \mathsf{method} \\$

 $n = p_1 + \dots + p_\ell$ $n = a_1^k + \dots + a_\ell^k$ $n = p_1^k + \dots + p_\ell^k$

For $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$, we consider **restricted partitions**

$$n = \lfloor a_1^{\alpha} \rfloor + \dots + \lfloor a_{\ell}^{\alpha} \rfloor$$

with $1 \le a_1 < \cdots < a_\ell$. Let ω_n be the random variable counting the number of summands in a random partition of the above form.

Central Limit Theorem (L-Madritsch-Tichy 2022)

The random variable ω_n is asymptotically normally dristributed, i.e.,

$$\mathbb{P}\left(\frac{\omega_n - \mu_n}{\sigma_n} < x\right) = \frac{1}{2\pi} \int_{-\infty}^x e^{-t^2/2} \,\mathrm{d}t + o(1)$$

with mean μ_n and variance σ_n^2 satisfying

$$\mu_{\it n}\sim {\it c}_1 {\it n}^{1/(lpha+1)}$$
 and $\sigma_{\it n}\sim {\it c}_2 {\it n}^{1/(lpha+1)},$

where c_1 and c_2 are explicitly known.

Overview of the Proof

Analytic parts:

- Mellin transform
- saddle-point method

Probabilistic part:

• Curtiss' theorem for moment-generating functions

By Curtiss' theorem, it is enough to show that

$$M_n(t) = \mathbb{E}\left(e^{(\omega_n - \mu_n)t/\sigma_n}\right) = e^{-\mu_n/\sigma_n}\mathbb{E}\left(e^{\omega_n t/\sigma_n}\right) \xrightarrow{n \to \infty} e^{t^2/2}.$$

Generating function, where *u* counts the length of the partition:

$$Q(z, u) = 1 + \sum_{n \ge 1} \sum_{k \ge 1} q(n, k) u^{k} z^{n} = \prod_{k \ge 1} (1 + u z^{k})^{g(k)}$$

where g(k) is given by

$$g(k) = \lceil (k+1)^{1/\alpha} \rceil - \lceil k^{1/\alpha} \rceil.$$

Proof I

Generating function, where *u* counts the length of the partition:

$$Q(z, u) = 1 + \sum_{n \ge 1} \sum_{k \ge 1} q(n, k) u^k z^n = \prod_{k \ge 1} (1 + u z^k)^{g(k)}$$

where g(k) is given by

$$g(k) = \lceil (k+1)^{1/\alpha} \rceil - \lceil k^{1/\alpha} \rceil.$$

Lemma

For the expected value $\mathbb{E}(\omega_n) = \mu_n$ and the variance $\mathbb{V}(\omega_n) = \sigma_n^2$ we have

$$\mu_n = \frac{[z^n]Q_u(z,1)}{[z^n]Q(z,1)} \quad \text{and} \quad \sigma_n^2 = \frac{[z^n]Q_{uu}(z,1)}{[z^n]Q(z,1)} + \frac{[z^n]Q_u(z,1)}{[z^n]Q(z,1)} - \mu_n^2.$$

Proof II

Determine the coefficients of Q(z, u):

$$[z^n]Q(z,u) = \frac{1}{2\pi i} \oint_{|z|=e^{-r}} z^{-n-1}Q(z,u) dz$$
$$= \frac{e^{nr}}{2\pi} \int_{-\pi}^{\pi} \exp\left(\underbrace{int + f(r+it,u)}_{=:g(r+it)}\right) dt$$

with suitable r > 0 and

$$f(\tau, u) = \log Q(e^{-\tau}, u) = \sum_{k \ge 1} g(k) \log(1 + u e^{-k\tau})$$

Split the integral at $t_n = r^{1+3/(7\alpha)}$ and use **Taylor expansion** of g(r+it):

$$\int_{|t| < t_n} e^{-\frac{t^2}{2}g''(r)} \left(1 + O\left(\sup_t \left| t^3 g'''(r+it) \right| \right) \right) \mathrm{d}t$$

 \hookrightarrow analyse g'' and g''' (Mellin transform) and estimate the error

primes as summands

partitions into powers

Integer partitions

Variants

classical results

• Partitions into small powers

 $\bullet~$ our result \leadsto central limit theorem

restricted and unrestricted partitions

idea of the proof

$$42 = \lfloor \sqrt{7} \rfloor + \lfloor \sqrt{379} \rfloor + \lfloor \sqrt{449} \rfloor$$

$$42 = 1 + 2 + 6 + 10 + 23$$

 $42 = 2^2 + 2^2 + 3^2 + 5^2$

Thank you for your attention!

This work is licensed under CC BY-SA 4.0.

Integer Partitions into Small Powers