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Plan for the Following 45 Minutes

o Progression-free sets in various settings

o in the integers (classical results)
o in the affine space Z],

o Caps
o in the affine space
o in the projective space

@ Connection to linear codes
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Progression-Free Sets in the Integers (1)

re(S) ... size of the largest k-term arithmetic progression-free
subset of a set S

Some Exact Values for S = {1,..., N}

r3({1,2,3}) =2
r3({1,2,3,4}) =3
r3({1,2,3,4,5}) = 4
r3({1,2,3,4,5,6}) =4
r3({1,2,3,4,5,6,7}) =4
(

r3({1,2,3,4,5,6,7,8}) =4
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Progression-Free Sets in the Integers (Il)

Salem and Spencer (1942):
n({1,... N N

>
“TogN_
exp((log2 +¢) IogologN)

N > N,

o integers in (2d — 1)-ary digit system  ~» k=3 ;50 a;(2d — 1)’
o using digits 0 < a; <d -1

e each a; with frequency n/d for integers < N = (2d — 1)"

@ no wrap mod 2d — 1

Behrend (1946):
N

1,...,N}) > ; N> N,
({ N exp((21/2log2 + ¢)+/log N) :
o |(ao,...,a4-1)|| =0 ~> sphere
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Progression-Free Sets in Z3

oo
° °
°
o r3(Z3) =4 = r3(Z5) > 2"
o r3(Z3) =9 = ry(Z8) > 2.08"
o r3(Z4) =20 = r3(Z5) > 2.11"
) r;:,(Z%) =45 = I’3(Z§') > 2.14" ®
o r3(Z8) = 112 = r3(Z§) > 2.19" ° 5 °
o r3(Z5) > 2.21"
(Calderbank, Fishburn)
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Some Maximal Progression-Free Sets in Z3
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o Situation gets complicated very fast.

o It is difficult to find maximal
progression-free sets in high
dimensions.
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Progression-Free Sets in Z] TU

Graz

Theorem (Lin—-Wolf 2010)

If kK < p, then we have

_n (k—1)n
k

Theorem (Elsholtz—Pach 2020)
For p > 5 and some explicitly given constant d,, we have
dp (p+1\"
n P (-
r(Z0) > ﬁ( —

Basic idea of the construction:
For vectors in the progression-free set,
select a “good” set of digits D C Z,
and only use these digits for the vectors.
— sets of size (|D| — o(1))"
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Progression-Free Sets in Z;

Theorem (Elsholtz—Klahn—-L 2020+)

For k > 5 odd we have For k > 4 even and

, p=—1 mod k we have
r(Zp) > ((1 - k——l—l)p_ 0(1)) | n(Zp) > ((1 - %)FH' = 0(1))n'

(improving on ptk—1)/k)

Theorem (Elsholtz—Klahn—-L 2020+)

rs(Z53) > (17 — o(1))" (improving on 12.28")
re(Z39) > (24 — o(1))" (improving on 17.92")
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Overview of the Construction

For a fixed prime p and
some set of digits D C Zj,

we consider the set

S(D,n) = {(al,...,a,,) e D"

Vd € D: a; = d for ﬁ s i}. }

We call D good if S(D, n) is a cap for all appropriate n € N.
By Stirling’s formula, we obtain

|D|_1 n— E_n ClD‘n

=0 \ D] n

D] -1 1 D\
0= and c= —~———(—) .
2 V1—-96/|D|\ 27
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Example: k =3 and p =11

We choose the digit set D = {0, 1, 3,4,5}.
If D is good, then this implies
5"
r3(Z11) > -
Progressions in D:
{(1,3,5),(3,4,5),(5,3, 1),(5,4,3)}
— {(3,4,5),(5,4,3)} —0

= S(D, n) does not contain any arithmetic progressions
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Progression-Free Sets in Z;

Theorem (Elsholtz—Klahn—-L 2020+)

For k > 5 odd we have For k > 4 even and

, p=—1 mod k we have
r(Zp) > ((1 - k——l—l)p_ 0(1)) | n(Zp) > ((1 - %)FH' = 0(1))n'

(improving on ptk—1/k))

Theorem (Elsholtz—Klahn—-L 2020+)

rs(Z53) > (17 — o(1))" (improving on 12.28")
re(Z39) > (24 — o(1))" (improving on 17.92")
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Next Objects of Interest: Caps

Definition

An affine (resp. projective) cap is a
subset of the affine (resp. projective) space
in which no three points lie on a line.

We mainly consider affine caps in Zj = (Z/pZ)" for primes p, and we set

r(Zp) = max{|S|: Sis a cap in Zp}.

construction of large caps in Zjy for primes p and arbitrary dimension n I

— good lower bounds for C(Z)

Since every subset of an affine space can be embedded into the projective
space, our lower bounds also hold in the projective case.
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Upper Bounds

For p € {3,4,5}, we have

“no three points on a line” <= "“no three points in AP".

o Ellenberg—Gijswijt (2016): C(Z3) < 2.756",
o Croot-Lev-Pach (2016): C(Z}) < 3.611".

Theorem (Blasiak—Church—Cohn et al. 2017)

We have
C(Zp) < (J(p)p)",
where

1 1P
) = 5 oMty T pyee07
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Previously Known Lower Bounds

Best known general constructions so far are “local’:
take the tensor product of a large cap in small dimension
For a fixed prime p, we have:

Theorem (Bose 1947)

C(Zf,) = p? and so C(Zp) > p2"/3.

Theorem (Edel-Bierbrauer 2004)

C(Zg) >p*+p2—1 andso C(Zp) > (p* +p% — 1)n/6‘

Theorem (Elsholtz—Pach 2020)

3" 3"

C(ZD)> >~ and C(Z0)

e > %
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Our Results on Caps

Theorem (Elsholtz-L 2020+)
n 7" n

5 9
C(21,) > 5 C(Z17) > 25" C(Z33) > 35

n n

10 12
C(Z34) > et C(Z4,) > —5

@ exponential improvements for all primes p < 41 with p =5 mod 6

o “global” and “digit-based” construction based on
the method of Elsholtz and Pach for progression-free sets
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Comparison of the Lower Bounds

In order to get rid of the dimension in C(Z7), we define

c(p) = lim (C(Z}))""

lim
n—oo

It is known that the limit exists and c(p) € [2, p).

p p?/3 (p* + p?> —1)Y® | new || improvement
5 2.92401. .. 2.94243 . .. 3 1.9562%
7 3.65930... 3.67139... 3
11 4.94608. .. 4.95282... 5 0.9526%
13 5.52877 ... 5.53418. .. 4
17 6.61148. .. 6.61528. .. 7 5.8156%
19 7.12036. .. 7.12364 . .. 6
23 8.08757 . .. 8.09012... 9 11.2468%
29 0.43913. .. 0.44099... | > 10 > 5.9210%
31 0.86827 . .. 0.86998. .. >8
37 || 11.10370... 11.10505... | > 10
41 || 11.89020... 11.89138... | > 12 > 0.9134%
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Connection and Difference to APs

Three-term arithmetic progressions are solutions of the equation
x—2y+z=0. (%)
Three points x, y, z € Z are not collinear if and only if
ax+by +cz#0 forall (a,b,c) € Z3\{(0,0,0)}
with a+ b+ c=0.

Without loss of generality, we can assume a=1 and b ¢ {—1,0}.

Three points x, y, z € Z are not collinear if and only if
X+by+(—b—1)z#0 forall beZ,\{-1,0}. (**)J

— still p — 2 equations to consider

Idea: Apply the method for progression-free sets not only to (x), but also
to the other equations (**) corresponding to “weighted progressions”.

~~ much more involved
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Finding Good Digit Sets (1)

We fix b € Zp \ {—1,0} and D C Z,, and set

Po(D) = {(x,y,2) € D*|x + by + (b — 1)z =0} \ ((1,1,1)). J

Assume that there is some n € N with |D| | n such that there are 3 points
x=(xt,....x%0) " y=01s--s¥n) s z=(21,...,22)" € S(D,n)
which satisfy x + by + (—b — 1)z = 0.
~~ introduce variable x, for each v = (v1, v2, v3) € Py(D) which
describes the number of occurrences of v in the components of x, y, z, i.e.,
xv = {i€{l,....n}| (xi,yi,zi) = v}|.

Since every digit d in D has to occur the same number of times, we find

Yooxw= > xv and D> xv= > x.

VEPb(D) VEPb(D) VEPb(D) VEPb(D)
vi=d vo=d vi=d v3=d
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Finding Good Digit Sets (II)

Z Xv = Z Xv and Z Xv = Z Xv (*)

VEPb(D) VEPb(D) VGPb(D) VEPb(D)
vi=d vo=d vi=d v3=d
S(D, n) does not contain x, y, z System (%) has no non-trivial
with x + by + (—=b—1)z =0for <= non-negative integral solution
any appropriate n. X = (xv | v € Pp(D)).

Hence, to show the “goodness” of some D, one has to ensure that
P={xe€Z|A x =0}
is empty, where the matrix A represents (%).
~+ integer programming
o Appropriate software is available. ©
@ Checking the emptiness of P is NP-complete. ®

~~ simpler conditions required
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Digit-Reducibility — A Sufficient Condition

Po(D) = {(x,y,2) € D* |x+ by + (~b—1)z=0}\ ((1,1,1))

If there is some r € {1,2,3} and a digit d € D such that
d does not occur in position r in any triple of P,(D), then
remove all triples of P,(D) which contain d in any position.
Proceed recursively with the remaining set.
Else: stop.

remaining set is

empty for all b?

D is good no conclusion
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Equivalent Equations

We have already seen:

The “goodness” of (D, D’) can be determined via Py(D).
The order of elements in (x,y, z) € Py(D) does not matter.

° (vavz) € Pb(D) — (X727y) S P—b—l(D)
— only one of the equations
x+by+(—b—1)z=0 and x+(—b—1)y+bz=0
has to be considered
O (X7Y7Z) € Pb(D) — (Z7y7X) € P(—b—l)*lb(D)
— only one of the equations
Xx+by+(—b—1)z=0 and
x+(=b—1)"tby+(-b—-1)"tz=0

has to be considered

~ significant reduction of the number of equations
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Example: p =11

We choose the digit set D = {0,1,3,4,5}.

If D is good, then this implies

5”
C(z1,) > ot
Equivalent equations:

o {x =2y +2z=0,x—10y 4+ 9z =0,x — 6y + 5z = 0},
0 {x 3y +2z=0,x—-T7y+6z=0,x—9y +8z=0,
x—5y+4z=0,x—8y+7z=0,x—4y + 3z = 0}.

QO x—2y+z=0:

P—2(D) = {(17375)7(3’475)7(5737 1)’(5747 3)}
—{(3,4,5),(5,4,3)} —0
Q x—3y+2z=0:
P—3(D)={(17 075)7(17374)7(1’47 0)7(37 074)7
(371’0)’(471’5)7(47570)7(57073)} _>®
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Projective Caps

The affine space Zj can always embedded into the projective space of the
same dimension, i.e., via

Zp = PG(n,p), (p1,---,pn) = (L:p1:---:pn)

~> bounds on affine caps also hold for projective caps

Theorem (Bose 1947, Quist 1952)

For an odd prime power g,
the maximal size of a cap in PG(3,q) is g> + 1.

These maximal caps are calles ovoids.
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Linear Codes (1)

Usually in coding theory:

Codes and Co.

@ A g-ary linear [n, k, d]-code C is
a k-dimensional subspace of
the n-dimensional vector space over GF(q)
with minimal Hamming distance d

@ A generator matrix G of C is
a k x n-matrix whose rows form a basis of C.

@ A check matrix H of C is
a (n — k) x k-matrix with cH" =0 for all c € C.
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Linear Codes (lI)

More convenient for our purposes:

Connection to Caps (Hill 1978)

o identify a vector with its non-zero scalar mutliples
~ [n, k, d]-code is a (k — 1)-dimensional subspace of PG(n — 1, q)

@ cap in PG(k — 1, q) of size n
— columns of k x n-matrix H

o Then H is a check matrix of a [n, n — k, d’]-code C* with d’ > 4 and
its dual is a [n, k, d]-code.

o Also the other direction works!

Good caps often lead to good codes!

Example: largest cap in PG(5, 3) has size 56
~~ ternary [56, 6, 36]-code
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o Progression-free sets in various settings

o in the integers (classical results)
o in the affine space Z],

o Caps
o in the affine space
o in the projective space

@ Connection to linear codes
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Thank you for your attention!
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