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Plan for the Following 45 Minutes

Progression-free sets in various settings
in the integers (classical results)
in the affine space Zn

m

Caps
in the affine space
in the projective space

Connection to linear codes
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Progression-Free Sets in the Integers (I)

rk(S) . . . size of the largest k-term arithmetic progression-free
subset of a set S

Some Exact Values for S = {1, . . . , N}

r3({1, 2, 3}) = 2
r3({1, 2, 3, 4}) = 3
r3({1, 2, 3, 4, 5}) = 4
r3({1, 2, 3, 4, 5, 6}) = 4
r3({1, 2, 3, 4, 5, 6, 7}) = 4
r3({1, 2, 3, 4, 5, 6, 7, 8}) = 4
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Progression-Free Sets in the Integers (II)

Salem and Spencer (1942):

r3({1, . . . ,N}) > N
exp
(
(log 2 + ε) log N

log log N
) , N ≥ Nε

integers in (2d − 1)-ary digit system  k =
∑

i≥0 ai(2d − 1)i

using digits 0 ≤ ai ≤ d − 1
each ai with frequency n/d for integers ≤ N = (2d − 1)n

no wrap mod 2d − 1

Behrend (1946):

r3({1, . . . ,N}) > N
exp
(
(2
√
2 log 2 + ε)

√
logN

) , N ≥ Nε

‖(a0, . . . , ad−1)‖ = 0  sphere
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Progression-Free Sets in Zn
3

Lower Bounds

r3(Z2
3) = 4 ⇒ r3(Zn

3)� 2n

r3(Z3
3) = 9 ⇒ r3(Zn

3)� 2.08n

r3(Z4
3) = 20 ⇒ r3(Zn

3)� 2.11n

r3(Z5
3) = 45 ⇒ r3(Zn

3)� 2.14n

r3(Z6
3) = 112 ⇒ r3(Zn

3)� 2.19n

r3(Zn
3)� 2.21n

(Calderbank, Fishburn)
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Some Maximal Progression-Free Sets in Zn
3

Situation gets complicated very fast.
It is difficult to find maximal
progression-free sets in high
dimensions.

 bounds
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Progression-Free Sets in Zn
p

Theorem (Lin–Wolf 2010)
If k ≤ p, then we have

rk(Zn
p) ≥

(
p2(k−1) + pk−1 − 1

) n
2k ≈ p

(k−1)n
k .

Theorem (Elsholtz–Pach 2020)
For p ≥ 5 and some explicitly given constant dp, we have

r3(Zn
p) ≥ dp√

n
(p + 1

2
)n
.

Basic idea of the construction:
For vectors in the progression-free set,

select a “good” set of digits D ⊆ Zp
and only use these digits for the vectors.

↪→ sets of size (|D| − o(1))n
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Progression-Free Sets in Zn
p

Theorem (Elsholtz–Klahn–L 2020+)

For k ≥ 5 odd we have

rk(Zn
p)�

((
1− 2

k + 1
)
p−o(1)

)n
.

For k ≥ 4 even and
p ≡ −1 mod k we have

rk(Zn
p)�

((
1− 2

k
)
p + 1− o(1)

)n
.

(improving on p(k−1)/k)

Theorem (Elsholtz–Klahn–L 2020+)

r5(Zn
23)� (17− o(1))n (improving on 12.28n)

r7(Zn
29)� (24− o(1))n (improving on 17.92n)
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Overview of the Construction
For a fixed prime p and

some set of digits D ⊆ Zp,
we consider the set

S(D, n) :=
{

(a1, . . . , an) ∈ Dn
∣∣∣∣∣ ∀d ∈ D : ai = d for n

|D| values of i
}
.

We call D good if S(D, n) is a cap for all appropriate n ∈ N.
By Stirling’s formula, we obtain

|S(D, n)| =
|D|−1∏
`=0

(
n − `n

|D|
n
|D|

)
∼ c|D|n

nδ

with
δ = |D| − 1

2 and c = 1√
1− δ/|D|

( |D|
2π

)δ/2
.
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Example: k = 3 and p = 11

We choose the digit set D = {0, 1, 3, 4, 5}.

If D is good, then this implies

r3(Zn
11)� 5n

n2 .

Progressions in D:

{( 1 , 3, 5), (3, 4, 5), (5, 3, 1 ), (5, 4, 3)}
↪→ {( 3 , 4, 5), (5, 4, 3 )} → ∅

⇒ S(D, n) does not contain any arithmetic progressions
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Progression-Free Sets in Zn
p

Theorem (Elsholtz–Klahn–L 2020+)

For k ≥ 5 odd we have

rk(Zn
p)�

((
1− 2

k + 1
)
p−o(1)

)n
.

For k ≥ 4 even and
p ≡ −1 mod k we have

rk(Zn
p)�

((
1− 2

k
)
p + 1− o(1)

)n
.

(improving on p(k−1/k))

Theorem (Elsholtz–Klahn–L 2020+)

r5(Zn
23)� (17− o(1))n (improving on 12.28n)

r7(Zn
29)� (24− o(1))n (improving on 17.92n)
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Next Objects of Interest: Caps

Definition
An affine (resp. projective) cap is a

subset of the affine (resp. projective) space
in which no three points lie on a line.

We mainly consider affine caps in Zn
p = (Z/pZ)n for primes p, and we set

rk(Zn
p) := max{|S| : S is a cap in Zn

p}.

Aim:
construction of large caps in Zn

p for primes p and arbitrary dimension n

↪→ good lower bounds for C(Zn
p)

Since every subset of an affine space can be embedded into the projective
space, our lower bounds also hold in the projective case.

Large Progression-Free Sets, Caps and Related Structures Gabriel F. Lipnik 12



Upper Bounds

For p ∈ {3, 4, 5}, we have

“no three points on a line” ⇐⇒ “no three points in AP”.

Theorem
Ellenberg–Gijswijt (2016): C(Zn

3) ≤ 2.756n,
Croot–Lev–Pach (2016): C(Zn

4) ≤ 3.611n.

Theorem (Blasiak–Church–Cohn et al. 2017)
We have

C(Zn
p) ≤ (J(p)p)n,

where
J(p) = 1

p min
0<t<1

1− tp

(1− t)t(p−1)/3 .
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Previously Known Lower Bounds
Best known general constructions so far are “local”:

take the tensor product of a large cap in small dimension
For a fixed prime p, we have:

Theorem (Bose 1947)

C(Z3
p) = p2 and so C(Zn

p)� p2n/3.

Theorem (Edel–Bierbrauer 2004)

C(Z6
p) ≥ p4 + p2 − 1 and so C(Zn

p)� (p4 + p2 − 1)n/6.

Theorem (Elsholtz–Pach 2020)

C(Zn
4)� 3n

√
n and C(Zn

5)� 3n
√
n .
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Our Results on Caps

Theorem (Elsholtz–L 2020+)

C(Zn
11)� 5n

n1.5 , C(Zn
17)� 7n

n2.5 , C(Zn
23)� 9n

n3.5 ,

C(Zn
29)� 10n

n4 , C(Zn
41)� 12n

n5 .

exponential improvements for all primes p ≤ 41 with p ≡ 5 mod 6
“global” and “digit-based” construction based on

the method of Elsholtz and Pach for progression-free sets
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Comparison of the Lower Bounds

In order to get rid of the dimension in C(Zn
p), we define

c(p) := lim
n→∞

(
C(Zn

p)
)1/n

.

It is known that the limit exists and c(p) ∈ [2, p).

p p2/3 (p4 + p2 − 1)1/6 new improvement
5 2.92401 . . . 2.94243 . . . 3 1.9562%
7 3.65930 . . . 3.67139 . . . 3

11 4.94608 . . . 4.95282 . . . 5 0.9526%
13 5.52877 . . . 5.53418 . . . 4
17 6.61148 . . . 6.61528 . . . 7 5.8156%
19 7.12036 . . . 7.12364 . . . 6
23 8.08757 . . . 8.09012 . . . 9 11.2468%
29 9.43913 . . . 9.44099 . . . ≥ 10 ≥ 5.9210%
31 9.86827 . . . 9.86998 . . . ≥ 8
37 11.10370 . . . 11.10505 . . . ≥ 10
41 11.89020 . . . 11.89138 . . . ≥ 12 ≥ 0.9134%
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Connection and Difference to APs
Three-term arithmetic progressions are solutions of the equation

x − 2y + z = 0. (?)

Three points x , y , z ∈ Zn
p are not collinear if and only if

ax + by + cz 6= 0 for all (a, b, c) ∈ Z3
p \ {(0, 0, 0)}

with a + b + c = 0.

Without loss of generality, we can assume a = 1 and b 6∈ {−1, 0}.

Three points x , y , z ∈ Zn
p are not collinear if and only if

x + by + (−b − 1)z 6= 0 for all b ∈ Zp \ {−1, 0}. (??)

↪→ still p − 2 equations to consider
Idea: Apply the method for progression-free sets not only to (?), but also
to the other equations (??) corresponding to “weighted progressions”.

 much more involved
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Finding Good Digit Sets (I)

We fix b ∈ Zp \ {−1, 0} and D ⊆ Zp, and set

Pb(D) =
{

(x , y , z) ∈ D3
∣∣∣ x + by + (−b − 1)z = 0

}
\
〈
(1, 1, 1)

〉
.

Assume that there is some n ∈ N with |D| | n such that there are 3 points
x = (x1, . . . , xn)>, y = (y1, . . . , yn)>, z = (z1, . . . , zn)> ∈ S(D, n)

which satisfy x + by + (−b − 1)z = 0.
 introduce variable χv for each v = (v1, v2, v3) ∈ Pb(D) which
describes the number of occurrences of v in the components of x , y , z , i.e.,

χv =
∣∣{i ∈ {1, . . . , n} ∣∣ (xi , yi , zi) = v

}∣∣.
Since every digit d in D has to occur the same number of times, we find∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv .
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Finding Good Digit Sets (II)

∑
v∈Pb(D)

v1=d

χv =
∑

v∈Pb(D)
v2=d

χv and
∑

v∈Pb(D)
v1=d

χv =
∑

v∈Pb(D)
v3=d

χv (?)

S(D, n) does not contain x , y , z
with x + by + (−b− 1)z = 0 for
any appropriate n.

⇐⇒
System (?) has no non-trivial
non-negative integral solution

χ = (χv | v ∈ Pb(D)).

Hence, to show the “goodness” of some D, one has to ensure that
P = {χ ∈ Z`≥0 |A · χ = 0}

is empty, where the matrix A represents (?).
 integer programming

Appropriate software is available. �
Checking the emptiness of P is NP-complete. �

 simpler conditions required
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Digit-Reducibility – A Sufficient Condition

Pb(D) =
{

(x , y , z) ∈ D3
∣∣∣ x + by + (−b − 1)z = 0

}
\
〈
(1, 1, 1)

〉
If there is some r ∈ {1, 2, 3} and a digit d ∈ D such that

d does not occur in position r in any triple of Pb(D), then
remove all triples of Pb(D) which contain d in any position.

Proceed recursively with the remaining set.
Else: stop.

remaining set is
empty for all b?

D is good

yes

no conclusion

no
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Equivalent Equations
We have already seen:

The “goodness” of (D,D′) can be determined via Pb(D).
The order of elements in (x , y , z) ∈ Pb(D) does not matter.

(x , y , z) ∈ Pb(D) ⇐⇒ (x , z , y) ∈ P−b − 1(D)
↪→ only one of the equations

x + by + (−b − 1)z = 0 and x + (−b − 1)y + bz = 0

has to be considered
(x , y , z) ∈ Pb(D) ⇐⇒ (z , y , x) ∈ P(−b − 1)−1b(D)
↪→ only one of the equations

x + by + (−b − 1)z = 0 and
x + (−b − 1)−1by + (−b − 1)−1z = 0

has to be considered

 significant reduction of the number of equations
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Example: p = 11
We choose the digit set D = {0, 1, 3, 4, 5}.
If D is good, then this implies

C(Zn
11)� 5n

n2 .

Equivalent equations:
{x − 2y + z = 0, x − 10y + 9z = 0, x − 6y + 5z = 0},
{x − 3y + 2z = 0, x − 7y + 6z = 0, x − 9y + 8z = 0,
x − 5y + 4z = 0, x − 8y + 7z = 0, x − 4y + 3z = 0}.

1 x − 2y + z = 0:

P−2(D) = {( 1 , 3, 5), (3, 4, 5), (5, 3, 1 ), (5, 4, 3)}
↪→ {( 3 , 4, 5), (5, 4, 3 )} → ∅

2 x − 3y + 2z = 0:

P−3(D) = {( 1 , 0 , 5), ( 1 , 3, 4), ( 1 , 4, 0 ), (3, 0 , 4),
(3, 1 , 0 ), (4, 1 , 5), (4, 5, 0 ), (5, 0 , 3)} → ∅
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Projective Caps

The affine space Zn
p can always embedded into the projective space of the

same dimension, i.e., via

Zn
p ↪→ PG(n, p), (p1, . . . , pn) 7→ (1 : p1 : · · · : pn).

 bounds on affine caps also hold for projective caps

Theorem (Bose 1947, Qvist 1952)
For an odd prime power q,

the maximal size of a cap in PG(3, q) is q2 + 1.

These maximal caps are calles ovoids.
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Linear Codes (I)

Usually in coding theory:

Codes and Co.
A q-ary linear [n, k, d ]-code C is

a k-dimensional subspace of
the n-dimensional vector space over GF(q)

with minimal Hamming distance d
A generator matrix G of C is

a k × n-matrix whose rows form a basis of C .
A check matrix H of C is

a (n − k)× k-matrix with cH> = 0 for all c ∈ C .
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Linear Codes (II)

More convenient for our purposes:

Connection to Caps (Hill 1978)
identify a vector with its non-zero scalar mutliples
 [n, k, d ]-code is a (k − 1)-dimensional subspace of PG(n − 1, q)
cap in PG(k − 1, q) of size n

↪→ columns of k × n-matrix H
Then H is a check matrix of a [n, n − k, d ′]-code C⊥ with d ′ ≥ 4 and

its dual is a [n, k, d ]-code.
Also the other direction works!

Good caps often lead to good codes!

Example: largest cap in PG(5, 3) has size 56
 ternary [56, 6, 36]-code
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Recap

Progression-free sets in various settings
in the integers (classical results)
in the affine space Zn

m

Caps
in the affine space
in the projective space

Connection to linear codes
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Thank you for your attention!
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