Asymptotic Analysis of *q*-Recursive Sequences

Gabriel F. Lipnik

Joint Work with Clemens Heuberger and Daniel Krenn

Probability and Combinatorics Seminar Uppsala University December 9, 2021

Plan for the Following 45 Minutes

q-Regular Sequences

Definition

A sequence $x \colon \mathbb{N}_0 \to \mathbb{C}$ is *q*-regular if there are sequences x_1, \ldots, x_D such that for every integer $i \ge 0$ and $0 \le b < q^i$ there exist $c_1, \ldots, c_D \in \mathbb{C}$ such that $\forall n \in \mathbb{N}_0$ $x(q^i n + b) = \sum_{j=1}^D c_j x_j(n).$

 \rightsquigarrow "q-kernel" of the sequences is finitely generated

Example: Binary Sum of Digits

s(n) =sum of bits in the binary expansion of n

$$oldsymbol{s}(oldsymbol{2}^ioldsymbol{n}+oldsymbol{b})=oldsymbol{s}(oldsymbol{n})+oldsymbol{s}(oldsymbol{b})$$
 for $i\geq 0$ and $0\leq b<2^i$

$$\Rightarrow s$$
 is 2-regular

Theorem (Allouche–Shallit 1992)

A sequence x is q-regular if and only if there exist square matrices A_0, \ldots, A_{q-1} and a vector-valued sequence v with first component x such that

 $v(qn+r) = A_r v(n)$

holds for all $n \in \mathbb{N}_0$ and $0 \leq r \leq q - 1$.

 \rightsquigarrow $(A_0, \ldots, A_{q-1}, v)$ is called *q*-linear representation of x

If
$$e_1 = (1, 0, \dots, 0)$$
 and $(n)_q = d_{\ell-1} \dots d_0$, then

$$x(n)=e_1A_{d_{\ell-1}}\cdots A_{d_0}v(0).$$

$$v(qn+r) = A_r v(n)$$

Binary Sum of Digits s:

We set

$$v(n) := \begin{pmatrix} s(n) \\ 1 \end{pmatrix},$$

then

$$v(2n) = \begin{pmatrix} s(2n) \\ 1 \end{pmatrix} = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{=:A_0} v(n)$$

and

$$v(2n+1) = \binom{s(2n+1)}{1} = \binom{s(n)+1}{1} = \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{=:A_1} v(n).$$

 \Rightarrow (A_0, A_1, v) is a 2-linear representation of s.

Asymptotic Analysis of q-Recursive Sequences

Asymptotics for the Summatory Function

Goal: Given a q-regular sequence x, find asymptotics for

$$X(N) = \sum_{0 \le n < N} x(n).$$

• $(A_0, \ldots, A_{q-1}, v)$ linear representation of x

• R > 0 such that $||A_{d_1} \cdots A_{d_\ell}|| = O(R^\ell)$ holds for all $\ell \in \mathbb{N}_0$ and $d_1, \ldots, d_\ell \in \{0, \ldots, q-1\} \rightsquigarrow$ joint spectral radius

Theorem (Heuberger-Krenn 2018)

$$X(N) = \sum_{\substack{\lambda \in \sigma(A_0 + \dots + A_{q-1}) \\ |\lambda| > R}} N^{\log_q \lambda} \sum_{\substack{0 \le i < m(\lambda)}} (\log N)^i \cdot \Phi_{\lambda i}(\{\log_q N\}) + O(N^{\log_q R}(\log N)^{m'})$$

- with 1-periodic continuous functions $\Phi_{\lambda i}$
- Fourier coefficients can be computed with arbitrary precision

• Thue–Morse Sequence *t*:

$$t(n) := s(n) \bmod 2$$

as an infinite word:

```
t = 01101001100...
```

• Unbordered Factors:

Bordered Factor:same prefix as suffixt = 0[110100110]0...Unbordered Factor:not borderedt = 011[010011]00...

f(n) ... number of unbordered factors of length n in t

Theorem (Consequence of Goč–Mousavi–Shallit 2013)

f(8n) = 2f(4n),	$(n \ge 1)$
f(8n+1) = f(4n+1),	$(n \ge 0)$
f(8n+2) = f(4n+1) + f(4n+3),	$(n \ge 1)$
f(8n+3) = -f(4n+1) + f(4n+2),	$(n \ge 2)$
$f(8n+4) = \frac{2f(4n+2)}{2},$	$(n \ge 0)$
f(8n+5) = f(4n+3),	$(n \ge 0)$
f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3),	$(n \ge 2)$
f(8n+7) = 2f(4n+1) + f(4n+3).	$(n \ge 3)$

$$\hookrightarrow \quad B_0 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B_1 = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

Definition

Let $M > m \ge 0$ and $\ell \le 0 \le u$ be integers.

A sequence $x : \mathbb{N}_0 \to \mathbb{C}$ is *q*-recursive with exponents *M* and *m* and bounds ℓ and *u*

if for all $0 \leq r < q^M$ and $\ell \leq k \leq u$ there are $c_{r,k} \in \mathbb{C}$ with

$$x(\boldsymbol{q}^{\boldsymbol{M}}n+r) = \sum_{\ell \leq k \leq u} c_{r,k} x(\boldsymbol{q}^{\boldsymbol{m}}n+k)$$

for all $n \ge n_0$.

Theorem (HKL 2021)

Let \boldsymbol{x} be \boldsymbol{q} -recursive with exponents M and m and bounds ℓ and u and

$$\begin{split} \ell' &= \left(\left\lfloor \frac{\ell q^{M-m} - q^M + 1}{q^{M-m} - 1} \right\rfloor + 1 \right) \llbracket \ell < 0 \rrbracket \quad \text{as well as} \\ u' &= \max \left\{ \left\lfloor \frac{u q^{M-m} + q^M - q^m}{q^{M-m} - 1} \right\rfloor - 1, \ q^m - 1 \right\}. \end{split}$$

Then **x** is **q**-regular with linear representation $v(n) = (v_0(n), \ldots, v_{m-1}(n), v_m(n), \ldots, v_{M-1}(n))^\top$, where

$$v_j(n) = \begin{pmatrix} x(q^j n) \\ \vdots \\ x(q^j n + q^j - 1) \end{pmatrix} \text{ for } 0 \le j < m \text{ and}$$
$$v_j(n) = \begin{pmatrix} x(q^j n + \ell') \\ \vdots \\ x(q^j n + q^j - q^m + u') \end{pmatrix} \text{ for } m \le j < M$$

• **Verify:** There exist matrices A_0, \ldots, A_{q-1} with

$$v(qn+r) = A_r v(n) \quad ext{for all } 0 \leq r < q ext{ and } n \in \mathbb{N}_0.$$

 \rightarrow each entry of v(qn + r) is a linear combination of entries of v(n)

- Distinguish between the blocks v_j of v.
- Show that bounds ℓ' and u' are correct.

Special Case of *q*-Recursive Sequences

9

Proposition (HKL 2021)

Let
$$m \ge 0$$
 and x be 2-recursive with
exponents $M = m + 1$ and m and $\Rightarrow x(2^{m+1}n+r) = \sum_{k=0}^{2^m-1} c_{r,k} \times (2^m n+k)$
bounds $\ell = 0$ and $u = 2^m - 1$.
Set $u' := 2^m - 1$ and $B_0 := (c_{r,k})_{\substack{0 \le r \le 2^m-1 \\ 0 \le k \le 2^m-1}}$ and $B_1 := (c_{r,k})_{\substack{2^m \le r \le 2^{m+1}-1 \\ 0 \le k \le 2^m-1}}$.
Then x is 2-regular with linear representation (A_0, A_1, v) , where
• $v(n) = (v_0(n), \dots, v_{m-1}(n), v_m(n))^{\top}$ with
 $v_j(n) = \begin{pmatrix} x(2^j n) \\ \vdots \\ x(2^j n + 2^j - 1) \end{pmatrix}$ for $0 \le j < m$ and $v_m(n) = \begin{pmatrix} x(2^m n) \\ \vdots \\ x(2^m n + u') \end{pmatrix}$,
• and
 $A_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$ and $A_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$.
Moreover, we have $\sigma(A_0 + A_1) = \sigma(B_0 + B_1) \cup \{0\}$.

 $f(n) \dots$ number of unbordered factors of length n in t

Theorem (Goč–Mousavi–Shallit 2013)

$f(8n) = 2f(4n), \qquad B_0$	$(n \ge 1)$
f(8n+1) = f(4n+1),	$(n \ge 0)$
f(8n+2) = f(4n+1) + f(4n+3),	$(n \ge 1)$
f(8n+3) = -f(4n+1) + f(4n+2),	$(n \ge 2)$
$f(8n+4) = 2f(4n+2), \qquad B_1$	$(n \ge 0)$
f(8n+5) = f(4n+3),	$(n \ge 0)$
f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3),	$(n \ge 2)$
f(8n+7) = 2f(4n+1) + f(4n+3).	$(n \ge 3)$

Corollary

The sequence f is "nearly" 2-recursive

with exponents M = 3 and m = 2 and bounds $\ell = 0$ and $u = 2^2 - 1$.

Linear Represenation of f

Proposition leads to "nearly" linear representation (A_0, A_1, v) with

$$v(n) = \begin{pmatrix} f(n) \\ f(2n) \\ f(4n) \\ f(4n+1) \\ f(4n+2) \\ f(4n+3) \end{pmatrix}$$

as well as
$$A_0 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 \end{pmatrix}$$

$$ightarrow v(2n) = A_0v(n)$$
 and $v(2n+1) = A_1v(n)$ for $n \ge 3$

Asymptotic Analysis of q-Recursive Sequences

Correction for $0 \le n \le 2$ yields a linear representation $(\widetilde{A}_0, \widetilde{A}_1, \widetilde{v})$ with

$$\begin{aligned} \sigma(\widetilde{A}_0 + \widetilde{A}_1) &= \sigma(A_0 + A_1) \cup \{0, 1\} \\ &= \sigma(B_0 + B_1) \cup \{0\} \cup \{0, 1\} = \{1 - \sqrt{3}, 0, 1, 2, 1 + \sqrt{3}\}. \end{aligned}$$

• joint spectral radius $\rho(\widetilde{A}_0, \widetilde{A}_1) = 2$ \hookrightarrow choose $\mathbf{R} = \mathbf{2}$

•
$$\kappa := \log_2(1 + \sqrt{3}) = 1.449984313...$$

Theorem (HKL 2021)

$$F(N) = \sum_{0 \le n < N} f(n) = N^{\kappa} \Phi(\{\log_2 N\}) + O(N \log N)$$

- with a 1-periodic function Φ
- Fourier coefficients of Φ can be computed efficiently

Periodic Fluctuation in the Main Term

- $F(2^{u})/2^{u\kappa}$ - $\Phi(u)$ approximated by its trigonometric polynomial of degree 2000

• Linear representation and asymptotics for

- Stern's diatomic sequence
- the number of non-zero elements in a generalized Pascal's triangle
- Some insights in the growth of matrix products
- Functional equation for the corresponding Dirichlet series
- Implementation in SageMath (Version 9.4)
 - Input: recurrence relations of a q-recursive sequence
 - Output:
 - linear representation
 - asymptotics incl. Fourier coefficients (combined with an implementation of Heuberger/Krenn)